, Volume 11, Issue 1, pp 145–152 | Cite as

Development of High-Efficiency PERC Solar Cells Using Atlas Silvaco

  • N. BoukorttEmail author
  • S. Patanè
  • B. Hadri
Original Paper


This paper presents the results of an investigation of Passivated Emitter Rear Cell (PERC) solar cell technology and the current understanding of the fundamental device physics. The research work has been focused on the influence of the bulk lifetime, the incident angle of the solar radiation, and temperature dependence on electrical properties of the considered PERC solar cell by using TCAD-ATLAS Silvaco. Also, this paper shows the best results obtained recently and some guidelines to improve still more the efficiency of the devices. The optimization at 300 K led to the following results Jsc = 41.70 mA/cm2, Voc = 0.727 V, FF = 80.53 %, P\(_{{\max }} =\) 244.439 W/m− 2, and η = 24.44 % which are close with those found in different research works. This technology provides a better electrical control over the cell and thus leads to valuable improvements in device performance.


Silicon Solar cell PERC Efficiency (ηOpen circuit voltage (VocModelling and simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partially supported by Semiconductor Laboratory (GE01/08), Kuwait University.


  1. 1.
    Swanson RM (2005) Approaching the 29% limit efficiency of silicon solar cells, Conference Record of the 31st IEEE PVSC, Orlando, FL, 889Google Scholar
  2. 2.
    Guney MS (2016) Solar power and application methods. Renew Sust Energ Rev 57:776–785CrossRefGoogle Scholar
  3. 3.
    Boukortt N, Patanè S, Hadri B (2018) Electrical Characterization of n-ZnO/c-Si 2D Heterojunction Solar Cell by Using TCAD Tools Silicon 10:1,
  4. 4.
    Dullweber T, et al (2014) Fine line printed 5 busbar PERC solar cells with conversion efficiencies beyond 21%, 29th EU PV Solar Energy Conference, pp 621Google Scholar
  5. 5.
    Ye F, et al (2016) 22.13% Efficient Industrial p-Type Mono PERC Solar Cell Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd, 3360–3365Google Scholar
  6. 6.
    Green MA, Blakers AW, Kurianski J, Narayanan S, Shi J, Szpitalak T, Taouk M, Wenham SR, Willison MR (1984) Ultimate performance silicon solar cells, Final Report, NERDDP Project 81/1264, 83Google Scholar
  7. 7.
    Blakers AW, Wang A, Milne AM, Zhao J, Green MA (1989) 22.8% efficient silicon solar cell. Appl Phys Lett 55:1363–1365CrossRefGoogle Scholar
  8. 8.
    Green MA (2015) The Passivated Emitter and Rear Cell (PERC): From conception to mass production. Sol Energy Mater Sol Cells 143:190–197CrossRefGoogle Scholar
  9. 9.
    Mat Desa MK et al (2016) Silicon back contact solar cell configuration: A pathway towards higher efficiency. Renew Sust Energ Rev 60:1516–1532CrossRefGoogle Scholar
  10. 10.
    Rawat A et al (2014) Numerical simulations for high efficiency HIT solar cells using microcrystalline silicon as emitter and back surface field (BSF) layers. Sol Energy 110:691–703CrossRefGoogle Scholar
  11. 11.
    Silvaco International (2016) Atlas user’s manual device simulation software (Santa Clara: Silvaco International)Google Scholar
  12. 12.
    Stem N, Cid M (2001) Studies of phosphorus gaussian profile emitter silicon solar cells. Mat Res 4(2):143–148CrossRefGoogle Scholar
  13. 13.
    Kløwa F, Hauga H, Erik Fossa S (2013) Surface recombination velocity measurements of metallized surfaces by photoluminescence imaging. Enrgy Proced 43:18–26CrossRefGoogle Scholar
  14. 14.
    Chen Z et al (1993) Plasma-enhanced chemical-vapor-deposited oxide for low surface recombination velocity and high effective lifetime in silicon. J of Appl Phys 74:2856. CrossRefGoogle Scholar
  15. 15.
    Schultz O et al (2004) Short communication: Accelerated publication: Multicrystalline silicon solar cells exceeding 20% efficiency. Prog Photovolt Res Appl 12:553–558. CrossRefGoogle Scholar
  16. 16.
    Cuevas A, Macdonald D (2004) Measuring and interpreting the lifetime of silicon wafers. Sol Energy 76:255–262. CrossRefGoogle Scholar
  17. 17.
    Smets AH et al (2016) Solar energy: The physics and engineering of photovoltaic conversion, technologies and systems UIT Cambridge LtdGoogle Scholar
  18. 18.
    Gérenton F et al (2015) Pattern of partial rear contacts for silicon solar cells. Enrgy Proced 77:677–686CrossRefGoogle Scholar
  19. 19.
    Diouf D, Kleidera JP, Desruesb T, Ribeyronb P-J (2010) Effects of the front surface field in n-type interdigitated back contact silicon heterojunctions solar cells. Enrgy Proced 2:59–64CrossRefGoogle Scholar
  20. 20.
    Dahlinger M, Carstens K (2016) Optimized laser doped back surface field for IBC solar cells. Enrgy Proced 92:450–456CrossRefGoogle Scholar
  21. 21.
    Wolf A et al (2010) Comprehensive analytical model for locally contacted rear surface passivated solar cells. J APPL PHYS 108:124510CrossRefGoogle Scholar
  22. 22.
    Yang G et al (2016) IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts. Sol Energy Mater Sol Cells 158:84–90CrossRefGoogle Scholar
  23. 23.
    Shaker A, Zekry A (2010) A new and simple model for plasma- and doping-induced band gap narrowing. J Electron Devices 8:293–299Google Scholar
  24. 24.
    Mat Desa MK et al (2016) Silicon back contact solar cell configuration: A pathway towards higher efficiency. Renew Sust Energ Rev 60:1516–1532CrossRefGoogle Scholar
  25. 25.
    Hernández Como N, Morales Acevedo A (2010) Simulation of heterojunction silicon solar cells with AMPS-1D. Sol Energy Mater Sol Cells 94:62–67CrossRefGoogle Scholar
  26. 26.
    Renewable Resource Data Center (2004) National Renewable Energy Laboratory
  27. 27.
    Deng W, et al (2015) 20.8% Efficient PERC Solar Cell on 156 mmx156 mmp-Type Multi-Crystalline Silicon Substrate Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd Google Scholar
  28. 28.
    Kiefer F et al (2013) Influence of solder pads to PERC solar cells for module integration. Enrgy Proced 38:368–374CrossRefGoogle Scholar
  29. 29.
    Yang G et al (2016) IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts. Sol Energ Mat Sol C 158:84–90CrossRefGoogle Scholar
  30. 30.
    Antonius R (2015) FFE IBC cells: Impact of busbars on cell performance with circuit modelling. Enrgy Proced 77:21–28CrossRefGoogle Scholar
  31. 31.
    Wiley J, Sons I (2001) Physics of semiconductor devices. 2nd edGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Semiconductor Laboratory, Electrical Engineering DepartmentCollege of Engineering & Petroleum Kuwait UniversityKuwaitKuwait
  2. 2.Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze Della TerraUniversity of MessinaMessinaItaly
  3. 3.Electromagnetism and Guided Optic Laboratory, Department of Electrical EngineeringUniversity of Abdelhamid Ibn BadisMostaganemAlgeria

Personalised recommendations