Silicon

pp 1–19 | Cite as

Effects of the Nanoclay and Crosslinking Systems on the Mechanical Properties of Ethylene-propylene-diene Monomer/styrene Butadiene Rubber Blends Nanocomposite

Original Paper
  • 12 Downloads

Abstract

This paper investigates the effect of nanoclay and crosslinking systems on the cure characteristics, mechanical properties, abrasion resistance, compression set and swelling properties of ethylene-propylene-diene monomer (EPDM)/styrene butadiene rubber (SBR) blends. Nanocomposites were prepared by two-roll mill. In this work, three different crosslinking systems were used, namely, sulphur, dicumyl peroxide and the mixed system consisting of sulphur and peroxide. The mechanical properties such as tensile strength, elongation at break, 100% modulus, hardness, crosslink density and tear strength of the EPDM/SBR nanocomposites were studied. Cure study indicates that nanoclay not only accelerates the curing reactions but also gives rise to a noticeable increase of the torque values, representing crosslinking density of the nanocomposites increases at the existence of nanoclay. The tensile strength and 100% modulus of EPDM/SBR nanocomposites increases with increase in nanoclay content up to 7.5 phr and then decreases for all the different cross-linking system. The elongation at break, hardness, tear strength and compression set increases with increasing content of nanoclay.

Keywords

Ethylene-propylene-diene monomer Styrene butadiene rubber Nanoclay Crosslinking systems Mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giannelis EP, Krishnamorti R, Manias E (1999) Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Polym Confined Environ 138:107–147CrossRefGoogle Scholar
  2. 2.
    Fukushima Y, Inagaki S (1987) Synthesis of an intercalated compound of montmorillonite and 6-polyamide. J Incl Phenom 5:473–482CrossRefGoogle Scholar
  3. 3.
    Burnside SD, Giannelis EP (1995) Synthesis and properties of new poly (dimethylsiloxane) nanocomposites. Chem Mater 7:1597–1600CrossRefGoogle Scholar
  4. 4.
    Mehrotra V, Giannelis EP (1990) Conducting molecular multilayers: intercalation of conjugated polymers in layered media. Mater Res Soc Symp Proc 171:39–44CrossRefGoogle Scholar
  5. 5.
    Vaia RA, Jandt KD, Kramer EJ, Giannelis EP (1995) Kinetics of Polymer Melt Intercalation. Macromolecules 28:8080–8085CrossRefGoogle Scholar
  6. 6.
    Wang Z, Pinnavaia TJ (1998) Nanolayer reinforcement of elastomeric polyurethane. Chem Mater 10:3769–3771CrossRefGoogle Scholar
  7. 7.
    Lebaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11–29CrossRefGoogle Scholar
  8. 8.
    Koo CM, Kim SO, Chung IJ (2003) Study on morphology evolution, orientational behavior, and anisotropic phase formation of highly filled polymer-layered silicate nanocomposites. Macromolecules 36:2748–2757CrossRefGoogle Scholar
  9. 9.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito OJ (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8:1185–1189CrossRefGoogle Scholar
  10. 10.
    Vaia RA, Vasudevan S, Krawiec W, Scanlon L, Lawrence G, Ginnelix EP (1995) New polymer electrolyte nanocomposites: Melt intercalation of poly (ethylene oxide) in mica-type silicates. Adv Mater 7:154–156CrossRefGoogle Scholar
  11. 11.
    Chang YW, Yang Y, Ryu S, Nah C (2002) Preparation and properties of EPDM/organomontmorillonite hybrid nanocomposites. Polym Int 51:319–324CrossRefGoogle Scholar
  12. 12.
    Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35CrossRefGoogle Scholar
  13. 13.
    Wang S, Hu Y, Wang Z, Yong T, Chen Z, Fan W (2003) Synthesis and characterization of polycarbonate/ABS/montmorillonite nanocomposites. Polym Degrad Stab 80:157–161CrossRefGoogle Scholar
  14. 14.
    Li JX, Wu J, Chan C-M (2000) Thermoplastic nanocomposites. Polymer 41:6935–6937CrossRefGoogle Scholar
  15. 15.
    Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng: R: Rep 28:1–63CrossRefGoogle Scholar
  16. 16.
    Arroyo M, Lopez Manchado MA, Herrero B (2003) Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer 44:2447–2453CrossRefGoogle Scholar
  17. 17.
    Varhgese S, Karger-Kocsis J (2003) Natural rubber-based nanocomposites by latex compounding with layered silicates. Polymer 44:4921–4927CrossRefGoogle Scholar
  18. 18.
    Lopez Manchado MA, Herrero B, Arroyo M (2003) Preparation and characterization of organoclay nanocomposites based on natural rubber. Polym Int 52:1070–1077CrossRefGoogle Scholar
  19. 19.
    Sadhu S, Bhowmick AK (2003) Effect of Chain Length of Amine and Nature and Loading of Clay on Styrene-Butadiene Rubber-Clay Nanocomposites. Rubber Chem Technol 76:860–875CrossRefGoogle Scholar
  20. 20.
    Sadhu S, Bhowmick AK (2004) Preparation and properties of styrene-butadiene rubber based nanocomposites: the influence of the structural and processing parameters. J Appl Polym Sci 92:698–709CrossRefGoogle Scholar
  21. 21.
    Chang YW, Yang YC, Ryu S, Nah C (2002) Preparation and properties of EPDM organomontmorillonite hybrid nanocomposites. Polym Int 51:319–324CrossRefGoogle Scholar
  22. 22.
    Franta I (1989) Elastomers and Rubber Compounding Materials: Manufacture, Properties and Applications. Elsevier, AmsterdamGoogle Scholar
  23. 23.
    Morton M (1999) Rubber Technology. Springer Science Business Media, DordrechtCrossRefGoogle Scholar
  24. 24.
    Darrell M, Krishnamurthy J (2002) Strategies for Optimizing Polypropylene−Clay Nanocomposite Structure. Ind Eng Chem Res 41:6402–6408CrossRefGoogle Scholar
  25. 25.
    Hambir S, Bulakh N, Jog JP (2002) Polypropylene/clay nanocomposites: effect of compatibilizer on the thermal, crystallization and dynamic mechanical behaviour. Polym Eng Sci 42:1800– 1807CrossRefGoogle Scholar
  26. 26.
    Lee KY, Goettler LA (2004) Structure-property relationships in polymer blend nanocomposites. Polym Eng Sci 44:1103–1111CrossRefGoogle Scholar
  27. 27.
    Lal J (1970) Effect of Crosslink Structure on Properties of Natural Rubber. Rubber Chem Technol 43:664–686CrossRefGoogle Scholar
  28. 28.
    Moore CG, Trego BR (1961) Structural characterization of vulcanizates. Part II. Use of triphenylphosphine to determine the structures of sulphur linkages in unaccelerated natural rubber–sulphur vulcanizate networks. J Appl Polym Sci 5:299–302CrossRefGoogle Scholar
  29. 29.
    Kok CM, Yee VH (1986) The effects of crosslink density and crosslink type on the tensile and tear strengths of NR, SBR and EPDM gum vulcanizates. Eur Polym J 22:341–345CrossRefGoogle Scholar
  30. 30.
    Chandra R, Mishra S, Parida TR (1995) Studies on dynamic behaviour and flow properties of HDPE/EPDM blends by torque rheometer. Polym Int 37:141–147CrossRefGoogle Scholar
  31. 31.
    Durandish M, Alipour A (2013) Investigation into morphology, microstructure and properties of SBR/EPDM/ORGANO montmorillonite nanocomposites. Chin J Polym Sci 31:660–669CrossRefGoogle Scholar
  32. 32.
    Muraleedharan Nair T, Kumaran MG, Unnikrishnan G (2004) Mechanical and aging properties of cross-linked ethylene propylene diene rubber / styrene butadiene rubber blends. J Appl Polym Sci 93:2606–2621CrossRefGoogle Scholar
  33. 33.
    Oliveira MG, Soares BG (2001) The effect of the vulcanizing system on cure and mechanical properties of NBR/EPDM blends. Polym Polym Compos 9:459–467Google Scholar
  34. 34.
    Monfared A, Arani AJ (2015) Morphology and rheology of (styrene-butadiene rubber/acrylonitrile-butadiene rubber) blends filled with organoclay: The effect of nanoparticle localization. Appl Clay Sci 108:1–11CrossRefGoogle Scholar
  35. 35.
    Mohan TP, Kuriakose Job, Kanny K (2011) Effect of nanoclay reinforcement on structure, thermal and mechanical properties of natural rubber–styrene butadine rubber (NR–SBR). J Ind Eng Chem 17:264–270CrossRefGoogle Scholar
  36. 36.
    Jovanovic V, Jovanovic SS, Simendic JB, Markovic G, Cincovic MM (2013) Composites based on carbon black reinforced NBR/EPDM rubber blends. Compos: Part B 45:333–340CrossRefGoogle Scholar
  37. 37.
    D15 ASTM (1958) Standard test method for rubber property-sample preparation for physical testing of rubber products. Annual Book of ASTM Standards, PhiladelphiaGoogle Scholar
  38. 38.
    Demirhan E, Kandemirli F, Kandemirli M (2007) The effects of furnace carbon blacks on the mechanical and the rheological properties of SBR1502 styrene butadiene rubber. Mater Des 28:1326–1329CrossRefGoogle Scholar
  39. 39.
    Manoj KC, Kumari P, Rajesh C, Unnikrishnan G (2010) Aromatic liquid transport through filled EPDM/NBR blends. J Polym Res 17:1–9CrossRefGoogle Scholar
  40. 40.
    395 ASTMD (1955) Standard test method for rubber property-compression set of vulcanized rubber. Annual Book of ASTM Standards, PhiladelphiaGoogle Scholar
  41. 41.
    Coran Y (2003) Chemistry of the vulcanization and protection of elastomers: a review of the achievements. J Appl Polym Sci 87:24–30CrossRefGoogle Scholar
  42. 42.
    Teh PL, Mohd Ishak ZA, Hashim AS, Karger-Kocsis J, Ishiaku US (2004) Effects of epoxidized natural rubber as a compatabilizer in melt compounded natural rubber-organoclay nanocomposites. Eur Polym J 40:2513–2521CrossRefGoogle Scholar
  43. 43.
    Ismail H, Chia HH (1988) The effects of multifunctional additive and vulcanization systems on silica filled Epoxidized Natural Rubber compounds. Eur Polym J 34:1857–1863CrossRefGoogle Scholar
  44. 44.
    Alipour A, Naderi G, Bakhshandeh GR, Shokoohi S (2011) Microstructure and Rheological Properties of NR/EPDM Nanocomposites: Effect of Composition. Iran Rubber Mag 62:26–34Google Scholar
  45. 45.
    Alipour A, Naderi G, Bakhshandeh GR, Vali H, Shokoohi S (2011) Elastomer nanocomposites based on NR/EPDM/organoclay: morphology and properties. Int Polym Process 26:48–55CrossRefGoogle Scholar
  46. 46.
    Varghese S, Gatos KG, Apostolov AA, J Karger-Kocsis J (2004) Morphology and mechanical properties of layered silicate reinforced natural and polyurethane rubber blends produced by latex compounding. J Appl Polym Sci 92:543–551CrossRefGoogle Scholar
  47. 47.
    Arrighi V, Gagliardi S, Higgins JS, Triolo A, Zanotti J-M Quasielastic neutron scattering as a probe of molecular motion in polymer-filler systems. E-MRS Spring Meeting 2002. Strasbourg (France). N-15Google Scholar
  48. 48.
    Persello J Designing nanostructured particular fillers for elastomers. Role of nanostructure and polymer filler interactions in rubber reinforcement. E-MRS Spring Meeting 2002. Strasbourg (France). N-8Google Scholar
  49. 49.
    Zaborski M, Donnet JB (2003) Activity of fillers in elastomer networks of different structure. Macromol Symp 194:87–100CrossRefGoogle Scholar
  50. 50.
    Brown RP (1996) Physical Testing of Rubbers, 3rd edn. Chapman and Hall, London, p 74CrossRefGoogle Scholar
  51. 51.
    Balachandran M, Bhagawan SS (2012) Mechanical, thermal and transport properties of nitrile rubber (NBR)-nanoclay composites. J Polym Res 19:9809CrossRefGoogle Scholar
  52. 52.
    Munusamy Y, Ismail H, Mariatti M, Ratnam CT (2008) Ethylene vinyl acetate/natural rubber/organoclay nanocomposites: effect of sulphur and peroxide vulcanization. J Reinf Plast Compos 27:1925–1945CrossRefGoogle Scholar
  53. 53.
    Zheng H, Zhang Y, Peng Z, Zhang Y (2004) Influence of clay modification on the structure and mechanical properties of EPDM/montmorillonite nanocomposites. Polym Test 23:217– 223CrossRefGoogle Scholar
  54. 54.
    Wu YP, Jia QX, Yu DS, Zhang LQ (2003) Structure and properties of nitrile rubber (NBR)-clay nanocomposites by co-coagulating NBR latex and clay aqueous suspension. J Appl Polym Sci 89:3855–3858CrossRefGoogle Scholar
  55. 55.
    Kim JT, Oh TS, Lee DH (2003) Preparation and characteristics of nitrile rubber (NBR) nanocomposites based on organophilic layered clay. Polym Int 52:1058–1063CrossRefGoogle Scholar
  56. 56.
    Pramanik M, Srivastava SK, Samantaray BK, Bhowmick AK (2002) Synthesis and characterization of organosoluble, thermoplastic elastomer/clay nanocomposites. J Polym Sci Part B: Polym Phys 40:2065–2072CrossRefGoogle Scholar
  57. 57.
    Smith LP (1993) The language of rubber. Butterworth, Heinemann, LondonGoogle Scholar
  58. 58.
    Othman AB (2001) Property profile of a laminated rubber bearing. Polym Test 20:159–166CrossRefGoogle Scholar
  59. 59.
    Arayapranee W, Garry LR (2008) A comparative study of the cure characteristics, processability, mechanical properties, ageing, and morphology of rice husk ash, silica and carbon black filled 75 : 25 NR/EPDM blends. J Appl Polym Sci 109:932–941CrossRefGoogle Scholar
  60. 60.
    Jacques JE (1985) Rubber Compounding, Rubber Technology and Manufacture, 2nd edn. Blow, CM & Hepburn, C, Butterworths, UKGoogle Scholar
  61. 61.
    Alipour A, Naderi G, Bakhshandeh GR, Vali H, Shokoohi S (2011) Elastomer Nanocomposites Based on NR/EPDM/Organoclay: Morphology and Properties. Int Polym Process 26:48–55CrossRefGoogle Scholar
  62. 62.
    Padmini M, Radhakrishnan CK, Sujith A, Unnikrishnan G, Purushothaman E (2006) Molecular transport of aliphatic hydrocarbons through styrene butadiene rubber/ethylene vinyl acetate blends. J Appl Polym Sci 101:2884–2897CrossRefGoogle Scholar
  63. 63.
    Unnikrishnan G, Thomas S (1998) Interaction of crosslinked natural rubber with chlorinated hydrocarbons. Polymer 39:3933–3938CrossRefGoogle Scholar
  64. 64.
    Tang CY, Chen DZ, Yue TM, Chan KC, Tsui CP, Yu PHF (2008) Water absorption and solubility of PHBHV/HA nanocomposites. Compos Sci Technol 68:1927–1934CrossRefGoogle Scholar
  65. 65.
    Flory PJ, Rehner J (1943) Statistical Mechanics of Cross-Linked Polymer Networks I. Rubberlike Elasticity. J Chem Phys 11:512CrossRefGoogle Scholar
  66. 66.
    Sujith A, Unnikrishnan G (2006) Molecular sorption by heterogeneous natural rubber/poly(ethylene-co-vinyl acetate) blend systems. J Polym Res 13:171–180CrossRefGoogle Scholar
  67. 67.
    Thomas PC, Tomlal JE, Selvin TP, Thomas S, Joseph K (2010) High-performance nanocomposites based on arcylonitrile-butadiene rubber with fillers of different particle size: Mechanical and morphological studies. Polym Compos 31:1515–1524CrossRefGoogle Scholar
  68. 68.
    Naseri ASZ, Jalali-Arani A (2015) A comparison between the effects of gamma radiation and sulfur cure system on the microstructure and crosslink network of (styrene butadiene rubber/ethylene propylene diene monomer) blends in presence of nanoclay. Radiat Phys Chem 115:68–74CrossRefGoogle Scholar
  69. 69.
    Noriman NZ, Ismail H (2012) Properties of styrene butadiene rubber (SBR)/recycled acrylonitrile butadiene rubber (NBRr) blends: the effects of carbon black/silica (CB/silica) hybrid filler and silane coupling agent, Si69. J Appl Polym Sci 124:19–27CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringAdhiparasakthi Engineering CollegeMelmaruvathurIndia

Personalised recommendations