Silicon

pp 1–7 | Cite as

Theoretical Study of the Doping Effects of n-type and p-type Silicon on the Surface Plasmon Resonance Using a 2D Grating

Original Paper
  • 12 Downloads

Abstract

A theoretical study on the excitation of surface plasmon (SP) through a 2D doping silicon gratingis present. Both n- and p-type doping silicon were used. The doping effects of n -type and p-type on surface plasmon resonance (SPR) were calculated and discussed in detail, using a rigorous coupled-wave analysis (RCWA) as a numerical method. It was observed that the doping effects of both n-type and p-type silicon were almost the same. The majority of charge carriers N in silicon play an important role in the sensitivity of surface plasmon resonance. From the numerical analysis, the doped silicon behaves as a dielectric for low charge carriers (N =  3.1019 cm− 3), whereas for high charge carriers (2.1020 cm− 3N), silicon become conductive as a metal. This suggests that the effect of the high charge carriers on SPR is more remarkable than that of the low charge carriers. Furthermore, the effects of grating structural parameters such as grating depth and grating period on the full width at half-minimum of SPR, minimum reflectance at resonance, and resonance anglewere investigated. It was found that the SPR curves were very sensitive to these parameters. Hence, it was concluded that a 5.1020 cm− 3 of charge carriers, a 6 μ m of grating period and a 0.6 μ m of grating depth were important for a higher excitation of surface plasmon.

Keywords

Surface plasmon (SP) 2D grating Doping silicon n-type p-type RCWA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer tracts in modern physics. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Homola J, Koudela I, Yee SS (1999) Surface plasmon resonance sensors: review. Sensors Actuators B 54:3–15CrossRefGoogle Scholar
  3. 3.
    Sharma AK, Jha R, Gupta BD (2007) Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors J 7:1118–1129CrossRefGoogle Scholar
  4. 4.
    Dhibi A, Sassi I, Oumezzine M (2016) Surface plasmon resonance sensor based on bimetallic alloys grating. Indian J Phys 90:125–130CrossRefGoogle Scholar
  5. 5.
    Lin HY, Kuo Y, Liao CY, Yang CC, Kiang YW (2012) Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures. Opt Express 20:A104–A118CrossRefGoogle Scholar
  6. 6.
    Zang Z, Mukai K, Navaretti P, Duelk M, Velez C, Hamamoto K (2011) High power and stable high coupling efficiency (66%) superluminescent light emitting diodes by using active multi-mode interferometer. IEICE Trans Electron E94-C:862–864CrossRefGoogle Scholar
  7. 7.
    Kollyukh OG, Liptuga AI, Morozhenko V, Pipa VI (2003) Thermal radiation of plane-parallel semitransparent layers. Opt Commun 225:349–352CrossRefGoogle Scholar
  8. 8.
    Guga KY, Kollyukh OG, Liptuga AI, Morozhenko V, Pipa VI (2004) Features of thermal radiation of plane-parallel semiconductor wafers. Semiconductors 38:507–511CrossRefGoogle Scholar
  9. 9.
    Ben-Abdallah P (2004) Thermal antenna behavior for thin-film structures. J Opt Soc Am A 21:1368–1371CrossRefGoogle Scholar
  10. 10.
    Narayanaswamy A, Chen G (2004) Thermal emission control with one-dimensional metallodielectric photonic crystals. Phys Rev B 70:125101CrossRefGoogle Scholar
  11. 11.
    Luo C, Narayanaswamy A, Chen G, Joannopoulos JD (2004) Thermal radiation from photonic crystals: a direct calculation. Phys Rev Lett 93:213905CrossRefGoogle Scholar
  12. 12.
    Kanehara M, Koike H, Yoshinaga T, Teranishi T (2009) Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J Am Chem Soc 131:17736–17737CrossRefGoogle Scholar
  13. 13.
    Buonsanti R, Llordes A, Aloni S, Helms BA, Milliron D (2011) Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. J Nano Lett 11:4706–4710CrossRefGoogle Scholar
  14. 14.
    Rowe DJ, Jeong JS, Mkhoyan KA, Kortshagen UR (2013) Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance. J Nano Lett 13:1317–1322CrossRefGoogle Scholar
  15. 15.
    Zhou S, Pi X, Ni Z, Ding Y, Jiang Y, Jin C, Delerue C, Yang D, Nozaki T (2015) Comparative study on the localized surface plasmon resonance of boron-and phosphorus-doped silicon nanocrystals. ACS Nano 9:378–386CrossRefGoogle Scholar
  16. 16.
    Chen YB (2009) Development of mid-infrared surface plasmon resonance-based sensors with highly doped silicon for biomedical and chemical applications. Opt Express 17:3130–3140CrossRefGoogle Scholar
  17. 17.
    Bhatia P, Gupta BD (2013) Surface plasmon resonance based fiber optic refractive index sensor utilizing silicon layer: effect of doping. Opt Commun 286:171–175CrossRefGoogle Scholar
  18. 18.
    Moharam MG, Gaylord TK (1983) Rigorous coupled-wave analysis of grating diffraction—E-mode polarization and losses. J Opt Soc Am 73:451–455CrossRefGoogle Scholar
  19. 19.
    Moharam MG, Gaylord TK (1986) Rigorous coupled-wave analysis of metallic surface-relief gratings. J Opt Soc Am A 3:1780–1787CrossRefGoogle Scholar
  20. 20.
    Lalanne P, Morris GM (1996) Highly improved convergence of the coupled-wave method for TM polarization. J Opt Soc Am A 13:779–784CrossRefGoogle Scholar
  21. 21.
    Papaioannou ET et al. (2011) Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays. Opt Express 19:23867–23877CrossRefGoogle Scholar
  22. 22.
    Moharam MG, Grann EB, Pommet DA, Gaylord TK (1995) Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J Opt Soc Am A 12:1068–1076CrossRefGoogle Scholar
  23. 23.
    Peng S, Morris GM (1995) Efficient implementation of rigorous coupled-wave analysis for surface relief gratings. J Opt Soc Am A 12:1087–1096CrossRefGoogle Scholar
  24. 24.
    Noponen E, Turunen J (1994) Eigenmode method for electromagnetic synthesis of diffractive elements with three dimensional profiles. J Opt Soc Am A 11:2494–2502CrossRefGoogle Scholar
  25. 25.
    Marquier F, Joulain K, Mulet JP, Carminati R, Greffet JJ (2004) Engineering infrared emission properties of silicon in the near field and the far field. Opt Commun 237:379–388CrossRefGoogle Scholar
  26. 26.
    Auslender M, Hava S (1996) Zero infrared reflectance anomaly in doped silicon lamellar gratings. II. Electric field amplitude distributions across the grating profile. Infrared Phys Technol 36:367–377CrossRefGoogle Scholar
  27. 27.
    Masetti G, Severi M, Solmi S (1983) Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon. IEEE Trans Electron Devices 30:764–769CrossRefGoogle Scholar
  28. 28.
    Sze SM, Irvin JC (1968) Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300 K. Solid State Electron 11:599–602CrossRefGoogle Scholar
  29. 29.
    Soref R, Peale RE, Buchwald W (2008) Long wave plasmonics on doped silicon and silicides. Opt Express 16:6507–6514CrossRefGoogle Scholar
  30. 30.
    Basu S, Lee BJ, Zhang ZM (2007) ASME International Mechanical Engineering Congress and Exposition. IMECE2007-41266Google Scholar
  31. 31.
    Lévêquea G, Martin OJF (2006) Optimization of finite diffraction gratings for the excitation of surface plasmons. J Appl Phys 100: 1–6CrossRefGoogle Scholar
  32. 32.
    Tahmasebpour M, Bahrami M, Asgari A (2014) Design study of nanograting-based surface plasmon resonance biosensor in the near-infrared wavelength. Appl Opt 53:1449–1458CrossRefGoogle Scholar
  33. 33.
    Barnes WL, Preist TW, Kitson SC, Sambles JR (1996) Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys Rev B 54:6227–6244CrossRefGoogle Scholar
  34. 34.
    Benahmed AJ, Ho C-M (2007) Bandgap-assisted surface plasmon sensing. Appl Opt 46:3369–3375CrossRefGoogle Scholar
  35. 35.
    Tahmasebpour M, Bahrami M, Asgari A (2014) Investigation of subwavelength grating structure for enhanced surface plasmon resonance detection. Appl Opt 53:6307–6316CrossRefGoogle Scholar
  36. 36.
    Dhibi A, Khemiri M, Oumezzine M (2016) Theoretical study of surface plasmons coupling in transition metallic alloy 2D binary grating. Phys E 79:160–166CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Abdelhak Dhibi
    • 1
  • Mehdi Khemiri
    • 1
  • Mohamed Oumezzine
    • 1
  1. 1.Laboratoire de Physico-chimie des Matériaux, Département de Physique, Faculté des Sciences de MonastirUniversité de MonastirMonastirTunisia

Personalised recommendations