pp 1–9 | Cite as

Diatom Frustules Nanostructure in Pelagic and Benthic Environments

  • A. Leynaert
  • C. Fardel
  • B. Beker
  • C. Soler
  • G. Delebecq
  • A. Lemercier
  • P. Pondaven
  • P. E. Durand
  • K. Heggarty
Original Paper


Diatoms are an important group of eukaryotic microalgae with a siliceous cell wall, the frustule. Diatoms are traditionally subdivided into two sub-classes, namely centric diatoms with a radial symmetry and pennate diatoms with a bilateral symmetry. These two groups of diatoms have usually biotope “preferences”, with centric diatoms dominating the pelagic environments, whereas the benthic habitats are mostly inhabited by pennate diatoms. The question of how the morphology of diatoms (centric versus pennate) or the ultrastructure of the frustule could be driven by ecological constrains remains unclear. For example, some studies have suggested that the structure of the diatom frustule could play a role in the light harvesting performances. In this work, we studied the variations of the diatom frustules nanostructure in several benthic and pelagic species inhabiting the same coastal ecosystem, particularly the ultrastructure that includes the distribution and size of the frustule pores. Although the species studied here experience different ecological constrains in term of light, we found no significant differences between benthic and pelagic species, in either the size of the pores (average = 285 (± 108) nm) or the distance between them (average = 234 (± 87) nm). Moreover, the intra-species variability was sometimes larger than the variability observed between cells from different genera. We concluded that the pore morphometry is controlled by a combination of genetically-driven processes of bio-mineralization, and episodic variations in environmental growth conditions which influence the chemical precipitation of silica within the cells.


Bacillariophyta Benthic and pelagic diatoms Microphytobenthos Frustule structure Silicification Biomineralization Light 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We wish to thank N. Gayet and A. Jolivet for their help in SEM and image analysis, the crew of the RV “Albert Lucas” and the divers from IUEM/LEMAR for their assistance in sampling. This work was supported by the French National Research Agency (ANR Blanc - CHIVAS project) and the University of Western Brittany (UBO-BQR, IPOD project).


  1. 1.
    Norton TA, Melkonian M, Andersen RA (1996) Algal biodiversity. Phycologia 35:308–326CrossRefGoogle Scholar
  2. 2.
    Hoek C, Mann D, Jahns HM (1995) Algae: an introduction to phycology. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Medlin LK (2009) Opinion. The use of the terms centric and pennate. Diatom Res 24:499–501CrossRefGoogle Scholar
  4. 4.
    Cahoon LB (1999) The role of benthic microalgae in neritic ecosystems. Oceanograp Marine Biol: Ann Rev 37:47–86Google Scholar
  5. 5.
    Chatterjee A, Klein C, Naegelen A, Claquin P, Masson A, Legoff M, Amice E, L’Helguen S, Chauvaud L, Leynaert A (2013) Comparative dynamics of pelagic and benthic micro-algae in a coastal ecosystem. Estuar Coast Shelf Sci 133:67–77CrossRefGoogle Scholar
  6. 6.
    Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–843CrossRefGoogle Scholar
  7. 7.
    Pondaven P, Gallinari M, Chollet S, Bucciarelli E, Sarthou G, Schultes S, Jean F (2007) Grazing-induced changes in cell wall silicification in a marine diatom. Protist 158:21–28CrossRefGoogle Scholar
  8. 8.
    Milligan AJ, Morel FMM (2002) A proton buffering role for silica in diatoms. Science 297:1848–1850CrossRefGoogle Scholar
  9. 9.
    Mitchell JG, Seuront L, Doubell MJ, Losic D, Voelcker NH, Seymour J, Lal R (2013) The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment. PloS ONE 8 (5):e59548CrossRefGoogle Scholar
  10. 10.
    Maibohm C, Nielsen JH, Rottwitt K (2016) Light interaction with nano-structured diatom frustule, from UV-a to NIR. MRS Advances 1(57):3811–3816CrossRefGoogle Scholar
  11. 11.
    Marchetti A, Harrison PJ (2007) Coupled changes in the cell morphology and the elemental (C, N, and Si) composition of the pennate diatom Pseudo-nitzschia due to iron deficiency. Limnol Oceanograp 52(5):2270–2284CrossRefGoogle Scholar
  12. 12.
    Su Y, Lundhom N, Friis SMM, Ellegaard M (2015) Implications for photonic applications of diatom growth and frustule nanostructure changes in response to different wavelengths. Nano Res.
  13. 13.
    Del Amo Y, Le Pape O, Tréguer P, Quéguiner B, Menesguen A, Aminot A (1997) Impacts of high-nitrate freshwater inputs on macrotidal ecosystems. I. Seasonal evolution of nutrient limitation for the diatom-dominated phytoplankton of the Bay of Brest (France). Mar Ecol Prog Ser 161:213–224CrossRefGoogle Scholar
  14. 14.
    Tréguer P, Le Corre P (1975) Manuel d’analyse des sels nutritifs dans leau de mer. Utilisation de l’Auto-Analyseur II: Technicon 2nd edn. Laboratoire d’océanographie Chimique, Université de Bretagne Occidentale, BrestGoogle Scholar
  15. 15.
    Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36CrossRefGoogle Scholar
  16. 16.
    Carr JM, Hergenrader GL, Troelstrup NH (1986) A simple, inexpensive method for cleaning diatoms. Trans Am Microsc Soc 105:152CrossRefGoogle Scholar
  17. 17.
    Townley HE, Woon KL, Payne FP, White-Cooper H, Parker AR (2007) Modification of the physical and optical properties of the frustule of the diatom Coscinodiscus wailesii by nickel sulfate. Nanotechnology.
  18. 18.
    Lundholm N, Skov J, Pocklington R, Moestrup Ø (1997) Studies on the marine planktonic diatom Pseudo-nitzschia. 2. Autecology of P. pseudodelicatissima based on isolates from Danish coastal waters. Phycologia 36:381–388CrossRefGoogle Scholar
  19. 19.
    Hillebrand H, Durselen CDD, Kirschtel U, Pollingher T, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424CrossRefGoogle Scholar
  20. 20.
    Round FE, Crawford RM, Mann DG (1990) Diatoms: biology and morphology of the genera. Cambridge University Press, CambridgeGoogle Scholar
  21. 21.
    Vrieling EG, Beelen TPM, Van Santen RA, Gieskes WWC (2000) Nanoscale uniformity of pore architecture in diatomaceous silica: a combined small and wide angle X-ray scattering study. J Phycol 36:146–159CrossRefGoogle Scholar
  22. 22.
    Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45: 361–402CrossRefGoogle Scholar
  23. 23.
    Vrieling EG, Sun Q, Tian M, Kooyman PJ, Gieskes WWC, van Santen RA, Sommerdijk NAJ (2007) Salinity-dependent diatom biosilicification implies an important role of external ionic strength. PNAS 104:10441–10446CrossRefGoogle Scholar
  24. 24.
    Herve V, Derr J, Douady S, Quinet M, Moisan L, Lopez PJ (2012) Multiparametric analyses reveal the pH-dependence of silicon biomineralization in diatoms. PLoS ONE 7(10):e46722. CrossRefGoogle Scholar
  25. 25.
    Finkel ZV, Benjamin K (2010) Silica use through time: macroevolutionary change in the morphology of the diatom frustule. Geo Microbiol J 27:596–608Google Scholar
  26. 26.
    Sigmon DE, Cahoon LB (1997) Comparative effects of benthic microalgae and phytoplankton on dissolved silica fluxes. Aquat Microb Ecol 13:275–284CrossRefGoogle Scholar
  27. 27.
    Rousseau V, Leynaert A, Daoud N, Lancelot C (2002) Diatom succession, silicification and silicic acid availability in Belgian coastal waters (Southern North Sea). Mar Ecol Prog Ser 236:61–73CrossRefGoogle Scholar
  28. 28.
    Leynaert A, Bucciarelli E, Claquin P, Dugdale RC, Martin-Jézéquel V, Pondaven P, Ragueneau O (2004) Effect of iron deficiency on diatom cell size and silicic acid uptake kinetics. Limnol Oceanogr 49:1134–1143CrossRefGoogle Scholar
  29. 29.
    Lavaud J, Strzepek RF, Kroth PG (2007) Photoprotection capacity differs among diatoms: possible consequences on the spatial distribution of diatoms related to fluctuations in the underwater light climate. Limnol Oceanogr 52(3):1188–1194CrossRefGoogle Scholar
  30. 30.
    Fuhrmann T, Landwehr S, Rharbi-Kucki ME, Sumper M (2004) Diatoms as living photonic crystals. Appl Phys B 78:257–260CrossRefGoogle Scholar
  31. 31.
    De Stefano L, Rea I, Rendina I, De Stefano M, Moretti L (2007) Lensless light focusing with the centric marine diatom Coscinodiscus walesii. Opt Express 15:18082–18088CrossRefGoogle Scholar
  32. 32.
    Yamanaka S, Yano R, Usami H, Hayashida N, Ohguchi N, Takeda H, Yoshino K (2008) Optical properties of diatom silica frustule with special reference to blue light. J Appl Phys.
  33. 33.
    De Tommasi E, Rea I, Mocella V, Moretti L, De Stefano M, Rendina I, De Stefano L (2010) Multi-wavelength study of light transmitted through a single marine centric diatom. Opt Express 18:12203–12212CrossRefGoogle Scholar
  34. 34.
    Romann J, Valmalette JC, Royset A, Einarsrud MA (2015) Optical properties of single diatom frustules revealed by confocal microscopy. Opt Lett 40:740–743CrossRefGoogle Scholar
  35. 35.
    Kröger N (2007) Prescribing diatom morphology: toward genetic engineering of biological nanomaterials. Curr Opin Chem Biol 11:662–669CrossRefGoogle Scholar
  36. 36.
    Coradin T, Lopez PJ (2003) Biogenic Silica patterning: simple chemistry or subtle biology? Chem Bio Chem 3:1–9Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR CNRS 6539Institut Universitaire Européen de la Mer (IUEM)PlouzanéFrance
  2. 2.Laboratoire de Biotechnologie et Chimie Marine (LBCM), EA 3884, Centre de Recherche C. HuygensUniversité de Bretagne SudLorient CedexFrance
  3. 3.Département d’OptiqueTelecom BretagnePlouzanéFrance

Personalised recommendations