Advertisement

Silicon

pp 1–5 | Cite as

Simulation of Filed Effect Sensor Based on Graphene Nanoribbon to Detect Toxic NO Gas

  • Amin Jodat
  • Amir Hossein Bayani
Original Paper
  • 14 Downloads

Abstract

This paper presents using density functional method to study nitrogen monoxide (NO) molecule physisorption with various concentrations on armchair graphene nanoribbon (GNR). We calculate the physical and electronic parameters of the GNR after nitrogen monoxide molecules adsorption. The Green’s function method is used to obtain the electronic properties and electrical current through the ribbon. The GNR is considered as a channel of a back-gated field effect transistor (FET) to study the sensing properties of a graphene nanoribbon field effect (GNR-FET) sensor. Results show that the GNR is a suitable sensing layer for NO detection with different concentrations. Also, the current in the channel increases when NO molecules density is increased. To improve the sensitivity of the sensor, we apply a gate voltage to change the Fermi level of the channel. Obtained results prove that by applying back gate voltage to the channel of the sensor, the current and sensitivity of the sensor are improved simultaneously.

Keywords

Current-voltage characteristic Electronic properties Field effect sensor Graphene nanoribbon Nitrogen monoxide molecules physisorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kim YH, Kim SJ, Kim YJ, Shim YS, Kim SY, Hong BH, Jang HW (2015) ACS Nano 9(10):10453–10460CrossRefGoogle Scholar
  2. 2.
    Cho B et al (2014) J Mater Chem C 2:5280–5285CrossRefGoogle Scholar
  3. 3.
    Zhang Z et al (2015) Nanoscale 7:10078–10084CrossRefGoogle Scholar
  4. 4.
    Zoghi M, Yazdanpanah Goharrizi A, Saremi M (2017) J Elec Materi 46(1):340–346CrossRefGoogle Scholar
  5. 5.
    Yazdanpanah Goharrizi A, Zoghi M, Saremi M (2016) IEEE Trans Electron Devices 63:3761CrossRefGoogle Scholar
  6. 6.
    Zhao J et al (2002) Nanotechnology 13:195CrossRefGoogle Scholar
  7. 7.
    Azimirad R, Bayani A, Pramana S (2016) Safa 87:4Google Scholar
  8. 8.
    Jodat A, Bayani A (2017) H ECS J Solid State Sci Technol 6:7Google Scholar
  9. 9.
    Azimirad R, Safa S, Bayani AH (2016) Physica Solidi State (b) 253:3CrossRefGoogle Scholar
  10. 10.
    Batzill M, Diebold U (2005) Prog Sur Sci 79:47–154CrossRefGoogle Scholar
  11. 11.
    Kreno LE, Leong K, Farha OK, Allendorf M (2012) Chem Rev 112:1105–1125CrossRefGoogle Scholar
  12. 12.
    Brumfıel G (2013) Nature 495:153CrossRefGoogle Scholar
  13. 13.
    Fleurence A, Friedlein R, Osaki T, Kawai H, Wang Y, Yamada-Takamura Y (2012) Phys Rev Lett 108:245501CrossRefGoogle Scholar
  14. 14.
    Giannozzi P et al (2009) J Phys: Condens Matter 21:39550219Google Scholar
  15. 15.
    Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539CrossRefGoogle Scholar
  16. 16.
    Barone V et al (2009) J Comp Chem 30:934CrossRefGoogle Scholar
  17. 17.
    Lv Y, Wang H, Chang S, He J, Huang Q (2015) IEEE Trans Electron Devices 62:11CrossRefGoogle Scholar
  18. 18.
    Mostofı AA, Yates JR, Lee Y-S, Souza I, Vanderbilt D, Marzari N (2008) Comput Phys Commun 178(9):685–699CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentUniversity of BojnordBojnordIran
  2. 2.Young Researchers and Elite Club, Mashhad BranchIslamic Azad UniversityMashhadIran

Personalised recommendations