Skip to main content
Log in

Preparation and Characterization of Oxide Glass from Sugar Cane Waste

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The main attention of the article deals with the taking out of silica from natural supply such as sugar cane bagasse. These waste materials in large quantities can produce a critical environmental problem. Hence, there is a need to adopt suitable plan to condense the waste. In the present study, all the waste materials are subjected to humidity removal with heating at 200 °C and sintered at 900 °C for 7 h. The obtained powders were examined and described by FT-IR and XRD analysis. The powder obtained from sugar cane bagasse sources was found to 100% SiO2 in tridymite and crystobalite phases. Crystalline sugarcane bagasse (SCB) was used as an alternative silica source for the synthesis of glass samples. The synthesis was studied as a function of crystalline sugarcane bagasse up to 35 mol% and the products of glass samples were characterized using a variety of analytical techniques, including X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), differential thermal analyzes (DTA) and UV/VIS/NIR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Peng F, Ren JL, Xu F, Bian J, Peng P, Sun RC (2009) J Agric Food Chem 57:6305–6317

    Article  CAS  Google Scholar 

  2. Li X, Kondo R, Sakai K (2002) J Wood Sci 48:159–162

    Article  Google Scholar 

  3. Zhao H, Kwak JH, Zhang ZC, Heather M, Brown HM, Arey BW, Holladay JE (2007) Carbohydr Polym 68:235–241

    Article  CAS  Google Scholar 

  4. Quintero JA, Cardona CA (2009) Ind Eng Chem Res 48:6783–6788

    Article  CAS  Google Scholar 

  5. Maeda RN, Serpa VI, Rocha VAL, Mesquita RAA, Santa Anna LMM, Castro AM, Driemeier CE, Pereira N Jr, Polikarpov I (2011) Process Biochem 46:1196–1201

    Article  CAS  Google Scholar 

  6. Rezende CA, de Lima MA, Maziero P, de Azevedo ER, Garcia W (2011) Biotechnol Biofuels 4:54–61

    Article  CAS  Google Scholar 

  7. Adsul MG, Varma AJ, Gokhale DV (2007) Green Chem 9:58–62

    Article  CAS  Google Scholar 

  8. Cardona CA, Quintero JA, Paz IC (2010) Bioresour Technol 101:4754–4766

    Article  CAS  Google Scholar 

  9. Akatov AA, Nikonov BS, Omel’yanenko BI, Stefanovskaya OI, Stefanovsky SV, Suntsov D Yu, Marra JC (2010) Glass Phys Chem 36(1):45–52

    Article  CAS  Google Scholar 

  10. Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S (2012) Spectrochim Acta A 90:173–176

    Article  CAS  Google Scholar 

  11. Roopan SM, Rohit, Madhumitha G, Abdul Rahuman A, Kamaraj C, Bharathi A, Surendra TV (2013) Ind Crop Prod 43:631–635

    Article  CAS  Google Scholar 

  12. Roopan SM, Bharathi A, Prabhakarn A, Abdul Rahuman A, Velayutham K, Rajakumar G, Padmaja RD, Lekshmi M, Madhumitha G (2012) Spectrochim Acta A: Mol Biomol Spectrosc 98:86–90

    Article  CAS  Google Scholar 

  13. Vaibhav V, Vijayalakshmi U, Roopan SM (2015) Spectrochim Acta A: Mol Biomol Spectrosc 139:515–520

    Article  CAS  Google Scholar 

  14. Kumar V, Pandey OP, Singh K (2010) Physica B 405:204–207

    Article  CAS  Google Scholar 

  15. Akatov AA, Nikonov BS, Omel’yanenko BI, Stefanovsky SV, Marra JC (2009) Glass Phys Chem 35:245–259

    Article  CAS  Google Scholar 

  16. Kaur G, Pandey OP, Singh K (2012) J Non-Crystal Solids 358:2589–2596

    Article  CAS  Google Scholar 

  17. Darwish H, Gomaa MM (2006) J Mater Sci: Mater Electron 17:35–42

    CAS  Google Scholar 

  18. He F, Ping C, Zheng Y (2013) Phys Procedia 48:73–80

    Article  CAS  Google Scholar 

  19. Ramasamy V, Ponnusamy V, Sabari S, Anishia SR, Gomathi SS (2009) Indian J Pure Appl Phys 47:586–591

    CAS  Google Scholar 

  20. Yingliang T, Yanli S, Ping LU, Jinshu C, Wencai LIU (2015) J Wuhan Univ Technol-Mater Sci 30:51–55

    Article  Google Scholar 

  21. Kaur R, Singha S, Pandey OP (2013) J Molec Struct 1049:409–413

    Article  CAS  Google Scholar 

  22. Kamitsos EI, Karakassides MA, Chryssikos GD (1987) J Phys Chem Glasses 28:203–209

    CAS  Google Scholar 

  23. Yawale SS, Yawale SP, Adgaonkar CS (2000) Indian J Eng Mater Soc 7:150–153

    CAS  Google Scholar 

  24. Kupracz P, Karczewski J, Welenc MP, Szreder NA, Winiarski MJ, Klimczuk T, Barczynski RJ (2015) J Non-Crystal Solids 423–424:68–75

    Article  Google Scholar 

  25. Naresh V, Buddhudu S (2012) Ceram Int 38:2325–2332

    Article  CAS  Google Scholar 

  26. El-Egili K (2003) J Physica B 325:340

    Article  CAS  Google Scholar 

  27. El-Batal FH, Ashour AH (2003) Mater Chem Phys 77:677

    Article  CAS  Google Scholar 

  28. Kashif I, Ratep A (2016) Phys Chem Glasses: Eur J Glass Sci Technol B 57(2):97–103

    Google Scholar 

  29. Abdel-Khalek EK, Salem SHM, Farouk M, Mohamed EA, Kashif I (2011) J. Non-Crystal Solids 357:864–872

    Article  CAS  Google Scholar 

  30. Marrota A, Buri A (1980) Thermochim Acta 40:397–403

    Article  Google Scholar 

  31. Dult M, Kundu RS, Berwal N, Punia R, Kishore N (2015) J Molec Struct 1089:32–37

    Article  CAS  Google Scholar 

  32. Kashif I, Abd El-Maboud A, Ratep A (2014) Res Phys 4:1–5

    Google Scholar 

  33. Fujino S, Hwang C, Morinaga K (2004) J Am Ceram Sci 87:10–16

    Article  CAS  Google Scholar 

  34. Gedam RS, Ramteke DD (2012) J Rare Earths 30(8):785–789

    Article  CAS  Google Scholar 

  35. Reddy RR, Nazeer AY, Abdul Azeem P, Rama G (2003) J Quant Spectrosc Radiat Transf 77:149–163

    Article  CAS  Google Scholar 

  36. Kashif I, Ratep A, Sanad AM (2015) Opt Quant Electron 47:673–684

    Article  CAS  Google Scholar 

  37. Varshneya AK (1994) Fundamentals of inorganic glasses. Academic, New York

    Google Scholar 

  38. Kashif I, Ratep A (2015) Appl Phys A 120:1427–1434

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Kashif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashif, I., Ratep, A. Preparation and Characterization of Oxide Glass from Sugar Cane Waste. Silicon 10, 2677–2683 (2018). https://doi.org/10.1007/s12633-018-9805-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9805-4

Keywords

Navigation