Silicon Utilization Efficiency of Different Wheat Cultivars in a Calcareous Soil


The main purpose of this study was to investigate the effects of different silicon levels and sources on the efficiency of acquisition and utilization of silicon in seven wheat cultivars in a calcareous soil. The treatments consisted of silicon additions to the soil (control, 200, 400, and 1000 mg/kg as potassium silicate and 0, 50, and 100 mg/kg as nanoparticles) and seven wheat cultivars (Gonbad, Shiroudi, Shiraz, Mahdavi, Marvdasht, Bahar, and Parsi). The factorial experiment was carried out in three replications. The results showed that the application of silicon at different levels and from various sources, as well as wheat cultivars and their interactions with the silicon treatments, led to significant differences (p ≤ 0.01) in the root and shoot dry weights, the silicon concentration in the root and shoot, and the total silicon in the shoot. In addition, there was a significant relationship between the silicon level/source and wheat cultivars with all efficiency indices (at level of 1%). The results also show there is a significant (p ≤ 0.01) relationship between shoot silicon efficiency and silicon acquisition efficiency (0.72). Therefore, considering the role of silicon in stress alleviation, its application in wheat cultivars with higher acquisition efficiency can help the plant growth.

This is a preview of subscription content, log in to check access.


  1. 1.

    Sposito G (2008) The chemistry of soils. Oxford University Press, Oxford

    Google Scholar 

  2. 2.

    Řezanka T, Sigler K (2008) Biologically active compounds of semi-metals. Stud Nat Prod Chem 35:835–921

    Article  Google Scholar 

  3. 3.

    Ranganathan S, Suvarchala V, Rajesh Y, Prasad MS, Padmakumari A, Voleti S (2006) Effects of silicon sources on its deposition, chlorophyll content, and disease and pest resistance in rice. Biol Plant 50(4):713–716

    Article  CAS  Google Scholar 

  4. 4.

    Jawahar S, Vaiyapuri V (2013) Effect of sulphur and silicon fertilization on yield, nutrient uptake and economics of rice. Int Res J Chem 3(1):35–43

    Google Scholar 

  5. 5.

    Hodson M, White PJ, Mead A, Broadley M (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96(6):1027–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Google Scholar 

  7. 7.

    Epstein E, Bloom A (2005) Mineral nutrition of plants: principles and perspectives2nd edn. Sinauer Assoc. Inc, Sunderland

    Google Scholar 

  8. 8.

    Abro SA, Qureshi R, Soomro FM, Mirbahar AA, Jakhar G (2009) Effects of silicon levels on growth and yield of wheat in silty loam soil. Pak J Bot 41(3):1385–1390

    CAS  Google Scholar 

  9. 9.

    Kim Y-H, Khan AL, Hamayun M, Kang SM, Beom YJ, Lee I-J (2011) Influence of short-term silicon application on endogenous physiohormonal levels of Oryza sativa L. under wounding stress. Biol Trace Elem Res 144(1–3):1175–1185

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Van Bockhaven J, De Vleesschauwer D, Höfte M (2012) Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. J Exp Bot 64(5):1281–1293

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Batten GD (1992) A review of phosphorus efficiency in wheat. Plant Soil 146(1–2):163–168

    Article  CAS  Google Scholar 

  12. 12.

    Fageria N, Baligar V (2005) Enhancing nitrogen use efficiency in crop plants. Adv Agron 88:97–185

    Article  CAS  Google Scholar 

  13. 13.

    Marschner H (1995) Mineral nutrition of higher plants. 2nd. Academic Press, New York

    Google Scholar 

  14. 14.

    Ma J (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50(1):11–18

    Article  CAS  Google Scholar 

  15. 15.

    Barker AV, Pilbeam DJ (2007) Handbook of plant nutrition. CRC press, Boca Raton

  16. 16.

    Datnoff L, Snyder G, Korndorfer G (2001) Silicon in agriculture. Studies in plant science. Elsevier, Amsterdam

    Google Scholar 

  17. 17.

    Narayanaswamy C, Prakash N (2009) Calibration and categorization of plant available silicon in rice soils of South India. J Plant Nutr 32(8):1237–1254

    Article  CAS  Google Scholar 

  18. 18.

    Riga P, Anza M (2003) Effect of magnesium deficiency on pepper growth parameters: implications for determination of magnesium-critical value. J Plant Nutr 26(8):1581–1593

    Article  CAS  Google Scholar 

  19. 19.

    Cock JH, Yoshida S (1970) An assessment of tile effects of silicate application on rice by a simulation method. Soil Sci Plant Nutr 16(5):212–214

    Article  CAS  Google Scholar 

  20. 20.

    Perez J, Bax L, Escolano C (2004) Road maps at 2015 on nanotechnology application in the sectors of: materials, health and medical systems, energy. Report prepared by Willems &van den Wildenberg

  21. 21.

    Liang QY, Hu B, Li C, Peng T, Jiang Z (2000) Study of the adsorption behavior of heavy metal ions on nanometer-size titanium dioxide with ICP-AES. Fresenius J Anal Chem 368(6):638–640

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Fu F, Akagi T, Yabuki S (2002) Origin of silica particles found in the cortex of roots. Soil Sci Soc Am J 66(4):1265–1271

    Article  CAS  Google Scholar 

  23. 23.

    Nikolic M, Nikolic N, Liang Y, Kirkby EA, Römheld V (2007) Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species. Plant Physiol 143(1):495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Ma J, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. In Studies in Plant Science 8:17–39. Elsevier

    Article  CAS  Google Scholar 

  25. 25.

    Epstein E (1999) Silicon. Annu Rev Plant Biol 50(1):641–664

    Article  CAS  Google Scholar 

  26. 26.

    Malmir R, Motesharezadeh B, Tabrizi L (2017) Effect of silocon and nano-silicon sources on some morpho-physiological responses of Stevia, 4th Congress on Nano Technology in Agriculture Karaj Iran

  27. 27.

    Bouyoucos GJ (1962) Hydrometer method improved for making particle size analyses of soils. Agron J 54(5):464–465

    Article  Google Scholar 

  28. 28.

    Swift R, Sparks D (1996) Methods of soil analysis: part 3. Chemical methods, vol 5. Soil Science Society of America Book Series, Madison, pp 1018–1020

    Google Scholar 

  29. 29.

    Haluschak P (2006) Laboratory methods of soil analysis. Canada-Manitoba Soil Survey 3–133

  30. 30.

    Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38

    Article  CAS  Google Scholar 

  31. 31.

    Loeppert RH, Suarez DL (1996) Carbonate and gypsum. Methods of soil analysis part 3—chemical methods (Methods of Soil) (3): 437–474

  32. 32.

    Bashour I, Sayegh AA (2007) Methods of analysis for soils of arid and semi-arid regions. Food and Agriculture Organization of the United Nations, Rome, pp 49–53

    Google Scholar 

  33. 33.

    Malakouti MJ, Tehrani MM (1999) Effect of micronutrients on the yield and quality of agricultural products. Tarbiat Modares Press, Iran 301 pp

    Google Scholar 

  34. 34.

    Elliott C, Snyder GH (1991) Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J Agric Food Chem 39(6):1118–1119

    Article  CAS  Google Scholar 

  35. 35.

    Fageria NK (2008) The use of nutrients in crop plant. CRC Press, Boca Raton, p 448

    Google Scholar 

  36. 36.

    Ahmad A, Afzal M, Ahmad AUH, Tahir M (2013) Effect of foliar application of silicon on yield and quality of rice (Oryza Sativa L). Cercetari Agronomice in Moldova 46(3):21

    Article  Google Scholar 

  37. 37.

    Gao X, Zou C, Wang L, Zhang F (2005) Silicon improves water use efficiency in maize plants. J Plant Nutr 27(8):1457–1470

    Article  CAS  Google Scholar 

  38. 38.

    Mali M, Aery N (2009) Effect of silicon on growth, biochemical constituents, and mineral nutrition of cowpea. Commun Soil Sci Plant Anal 40(7–8):1041–1052

    Article  CAS  Google Scholar 

  39. 39.

    Dehghanipoodeh S, Ghobadi C, Baninasab B, Gheysari M, Bidabadi SS (2016) Effects of potassium silicate and nanosilica on quantitative and qualitative characteristics of a commercial strawberry (fragaria× ananassa cv.‘camarosa’). J Plant Nutr 39(4):502–507

    Article  CAS  Google Scholar 

  40. 40.

    Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11(8):392–397

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Khoshgoftarmanesh A, Shariatmadari H, Karimian N, Khajehpour M (2006) Responses of wheat genotypes to zinc fertilization under saline soil conditions. J Plant Nutr 29(9):1543–1556

    Article  CAS  Google Scholar 

  42. 42.

    Chen S, Xing J, Lan H (2012) Comparative effects of neutral salt and alkaline salt stress on seed germination, early seedling growth and physiological response of a halophyte species Chenopodium glaucum. Afr J Biotechnol 11(40):9572–9581

    CAS  Google Scholar 

  43. 43.

    Genc Y, McDonald GK, Graham RD (2006) Contribution of different mechanisms to zinc efficiency in bread wheat during early vegetative stage. Plant Soil 281(1–2):353–367

    Article  CAS  Google Scholar 

  44. 44.

    Cakmak I, Torun B, Erenoğlu B, Öztürk L, Marschner H, Kalayci M, Ekiz H, Yilmaz A (1998) Morphological and physiological differences in the response of cereals to zinc deficiency. Euphytica 100(1):349–357

    Article  CAS  Google Scholar 

  45. 45.

    Rengel Z, Graham RD (1996) Uptake of zinc from chelate-buffered nutrient solutions by wheat genotypes differing in zinc efficiency. J Exp Bot 47(2):217–226

    Article  CAS  Google Scholar 

  46. 46.

    Cakmak I, Ekiz H, Yilmaz A, Torun B, Köleli N, Gültekin I, Alkan A, Eker S (1997) Differential response of rye, triticale, bread and durum wheats to zinc deficiency in calcareous soils. Plant Soil 188(1):1–10

    Article  CAS  Google Scholar 

  47. 47.

    Fageria N, Slaton N, Baligar V (2003) Nutrient management for improving lowland rice productivity and sustainability. Adv Agron 80:63–152

    Article  CAS  Google Scholar 

Download references


Financial support of this research by the University of Tehran and Soil and Water Research Institute of Iran under project number 13-10-1051-027-96018-960590 is gratefully acknowledged. Special thanks to Kerangin Company for providing nano-silicate used in this research.

Author information



Corresponding author

Correspondence to Babak Motesharezadeh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saberian Ranjbar, S., Motesharezadeh, B., Moshiri, F. et al. Silicon Utilization Efficiency of Different Wheat Cultivars in a Calcareous Soil. Silicon 11, 2159–2168 (2019).

Download citation


  • Wheat
  • Utilization efficiency
  • Acquisition
  • Silicon
  • Silicon Nano-particle
  • Stress