Structure, Reactivity, Nonlinear Optical Properties and Vibrational Study of 5-Thioxo-1,4-thiazaolidin-3-one and 5-thioxo-1,4,2-thiazasilolidin-3-one (Silicon vs. Carbon). A DFT Study

Abstract

The structures and nonlinear optical properties (NLO) of 5-thioxo-1,4-thiazaolidin-3-one(Rhodanine) and 5-thioxo-1,4,2-thiazasilolidin-3-one (silarhodanine) tautomers were studied in gas phase and in solutions using the B3LYP density functional theory and composite CBS-QB3 method. The global minimum at the B3LYP/6-31++G(d,p) and CBS-QB3 levels of theory is tautomer 5 in the gas phase and in solvents for rhodanine, and simiarly, tautomer 13 is the global minimum for silarhodanine. The interconversion among the tautomers is proceeded by an intramolecular proton transfer reaction. An identical solvent effects can be noted for rhodanine and silarhodanine tautomers. The activation barrier towards ring-opening processes (12, 910) decreases with the increasing dielectric constant of the solvent; on the other hand, the barrier of the ring-closure processes (23, 1011) increases with the increasing dielectric constant. The tautomers are predicted to show significant NLO properties. Also, a number of correlations between the dipole moment and electron densities in bond critical points of the S3-C4 bond and interaction energy as well as vibrational frequencies at the transition states (TS2–3,TS10–11) were examined under different solvents. Finally, the investigation of the heavy atom substitution effects on the properties of silarhodanine is proven to be very weak under these conditions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Watson JD, Crick FH (1953). Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Gold V (1979) Glossary of terms used in physical organic chemistry 51:1725–1801

  3. 3.

    Raczynska ED, Kosinska W, Osmialowski B, Gawinecki R (2005) Chem Rev 105:3561–3612

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Raper ES (1985) Coord Chem Rev 61:115–184

    Article  CAS  Google Scholar 

  5. 5.

    Le Fevre R, Werner R (1957) Aust J Chem 10:26–33

    Article  Google Scholar 

  6. 6.

    Contello BCC, Eggleston DS, Haigh D, Haltiwanger RC, Heath CM, Hindley RM, Jenning KR, Sime JT, Woroneick SR (1994) J Chem Soc Perkin Trans 3319–3324

  7. 7.

    Villain-Guillot P, Gualtieri M, Bastide L, Roquet F, Martinez J, Amblard M, Pugniere M, Leonetti JP (2007) J Med Chem 50:4195–4204

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Yan Y, Larson G, Wu JZ, Appleby T, Ding Y, Hamatake R, Hong Z, Yao N (2007) Bioorg Med Chem Lett 17:63–67

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Kletzien RF, Clarke SD (1992) Mol Pharmacol 41:393–398

    CAS  PubMed  Google Scholar 

  10. 10.

    Cutshall NS, O’Day C, Prezhdo M (2005) Bioorg Med Chem Lett 15:3374–3379

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Al-Sehemi AG, EL-Gogary TM (2009) J Mol Struct 907:66–73

    Article  CAS  Google Scholar 

  12. 12.

    Tahmassebi D (2003) J Mol Struct 638:11–20

    Article  CAS  Google Scholar 

  13. 13.

    Boyd DB (1997) J Mol Struct 401:227–234

    Article  CAS  Google Scholar 

  14. 14.

    Irvin MW, Patrick LG, Kewney J, Hastings SF, MacKenzie SJ (2008) Bioorg Med Chem Lett 18:2032–2037

    Article  CAS  Google Scholar 

  15. 15.

    Insuasty A, Ortiz A, Tigreros A, Solarte E, Insuasty B (2011) Dyes Pigments 88:385–390

    Article  CAS  Google Scholar 

  16. 16.

    Spassova M, Enchev V (2004) Chem Phys 204:29–36

    Article  CAS  Google Scholar 

  17. 17.

    Fernandes S, Herbivo C, De-Sousa J, Comel A, Belsley M, Raposo M (2018) Dyes Pigments 149:566–573

    Article  CAS  Google Scholar 

  18. 18.

    Wan Z, Jia C, Wang Y, Yao X (2017) Appl Mater Interfaces 9:25225–25231

    Article  CAS  Google Scholar 

  19. 19.

    Ahmed AA (2012) Comput Theor Chem 999:251–258

    Article  CAS  Google Scholar 

  20. 20.

    Ahmed AA (2013) J Mol Struct 1032:5–11

    Article  CAS  Google Scholar 

  21. 21.

    Ng SW (2007) Acta Cryst E63:o1363–o1364

  22. 22.

    Ahmed AA, Hassan NF (2013) J Chem Pharm Res 5(6):209–214

    CAS  Google Scholar 

  23. 23.

    Ahmed AA, Hassan NF (2013) Der Chemica Sinica 4(5):58–61

    Google Scholar 

  24. 24.

    Becke AD (1998) Phys Rev 38:3098–3100

    Article  Google Scholar 

  25. 25.

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  26. 26.

    Miehich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  Google Scholar 

  27. 27.

    Scott PA, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  28. 28.

    Fukui F (1981) Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  29. 29.

    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  30. 30.

    Bader RF (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  31. 31.

    Parr RG, Szentpaly LV, Liu S (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  32. 32.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2013) Gaussian 09, revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  33. 33.

    Yi-Fan HU, Xin LU (2007) Chinese J Struct Chem 27:547–552

    Google Scholar 

  34. 34.

    Andrienko GA. ChemCraft version 1.8. https://www.chemcraftprog.com

  35. 35.

    Haddon RC, Wasserman SR, Wudl F, Williams GR (1980) J Am Chem Soc 102:6687–6693

    Article  CAS  Google Scholar 

  36. 36.

    Gupta SP (2013) In: Kakkar R (ed) Theoretical studies on hydroxamic acids. Springer, Berlin

    Google Scholar 

  37. 37.

    Elguero E, Marzin C, Katritzky AR, Linda P (1976) The tautomerism of heterocycles, vol 453. Acad. Press, New York, pp 457–462

    Google Scholar 

  38. 38.

    Valls N, Segarra VM, Alcalde E, Marin A (1985) Adv Synth Catal 327(2):251–260

    CAS  Google Scholar 

  39. 39.

    Enchev V, Chorbadjiev S, Jordanov B (2002) Chem Heterocycl Compd 38:1110–1120

    Article  CAS  Google Scholar 

  40. 40.

    Eyring H (1935) J Chem Phys 3:107–115

    Article  CAS  Google Scholar 

  41. 41.

    Bravo-Perez G, Alvarez-Idaboy JR, Cruz-Torres A, Ruiz ME (2002) J Phys Chem A 106:4645–4650

    Article  CAS  Google Scholar 

  42. 42.

    Lacroix PG, Malfant I, Lepetit C (2015) Coord Chem Rev 308:381–394

    Article  CAS  Google Scholar 

  43. 43.

    Zarei SA, Piltan M, Hassanzadeh K, Akhtari K, Cincic D (2015) J Mol Struct 1083:82–87

    Article  CAS  Google Scholar 

  44. 44.

    Jabeen S, Dines TJ, Leharne SA, Withnall R, Chowdhry BZ (2010) J Raman Spectrosc 41:1306–1317

    Article  CAS  Google Scholar 

  45. 45.

    Mitzel NM, Kiener C, Rankin DW (1999) Organometallics 18:3437–3444

    Article  CAS  Google Scholar 

  46. 46.

    Kakkar R, Dua D, Zaidi S (2007) Org Biomol Chem 5:547–557

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Yuen CW, Ku SK, Choi PS, Kan SW, Tsang SY (2005) Res J Text Appar 9:26–38

    Article  Google Scholar 

Download references

Acknowledgments

The author is indebted to Professor J. E. McGrady and his group at theoretical chemistry laboratory, Oxford University for their assistance with the computers facility.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdulhakim A. Ahmed.

Electronic supplementary material

ESM 1

(DOCX 64 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A.A., Domingo, L.R. Structure, Reactivity, Nonlinear Optical Properties and Vibrational Study of 5-Thioxo-1,4-thiazaolidin-3-one and 5-thioxo-1,4,2-thiazasilolidin-3-one (Silicon vs. Carbon). A DFT Study. Silicon 11, 2135–2147 (2019). https://doi.org/10.1007/s12633-018-0036-5

Download citation

Keywords

  • NLO
  • Vibrational assignments
  • Solvent effects
  • Reactivity
  • Ring-opening
  • Rhodanine
  • Silarhodanine