, Volume 10, Issue 5, pp 1893–1902 | Cite as

Effect of Si and Ge Surface Doping on the Be2C Monolayer: Case Study on Electrical and Optical Properties

  • Mosayeb Naseri
  • Ali H. Reshak
  • Arash Boochani
  • D. P. Rai
  • Laleh Farhang Matin
  • Shahram Solaymani
Original Paper


The electronic and optical properties of X (Si, Ge) doped Be2C monolayer has been investigated using the all-electron full potential linear augmented plane wave (FP-LAPW + lo) method in a scalar relativistic version as embodied in the Wien2k code based on the density functional theory. Using cohesive energy calculation, it has been shown that the Si and Ge doped to Be2C monolayer have stable structures and the doping processes modified the direct band gaps. The calculated electronic band structure confirm the direct band gap nature since the conduction band minimum and the valence band maximum are located at the center of the Brillouin zone. The total and partial density of states help to gain further information regarding the hybridizations and the orbitals which control the energy band gap. The calculated optical properties help to gain deep insight into the electronic structure. Our calculated results indicate that the X (Si, Ge) doped Be2C monolayer can be have potential application in optoelectronics devices.


Be2C monolayer Electrical properties Optical properties DFT calculations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



It is our pleasure to thank Soheila Gholipour, Yasna Naseri and Viana Naseri for their interests in this work. A. H. Reshak would like to acknowledge the CENTEM project, reg. no. CZ.1.05/2.1.00/03.0088, cofounded by the ERDF as part of the Ministry of Education, Youth and Sports OP RDI programme and, in the follow-up sustainability stage, supported through CENTEM PLUS (LO1402) by financial means from the Ministry of Education, Youth and Sports under the National Sustainability Programme I. Computational resources were provided by Meta Centrum (LM2010005) and CERIT-SC (CZ.1.05/3.2.00/References08.0144) infrastructures.

Compliance with Ethical Standards

Conflict of interests

The authors report no conflict of interests. The authors alone are responsible for the content and writing of the paper.


  1. 1.
    Nakada K et al (1996) Phys Rev B 54:17954CrossRefGoogle Scholar
  2. 2.
    Okada S (2008) Phys Rev B 77:041408CrossRefGoogle Scholar
  3. 3.
    Novoselov KS et al (2005) Nature 438:197CrossRefGoogle Scholar
  4. 4.
    Su C, Jiang H, Feng J (2013) Phys Rev B 87:075453CrossRefGoogle Scholar
  5. 5.
    Mukhopadhyay C, Behera H (2013) World J Eng 10:39–43CrossRefGoogle Scholar
  6. 6.
    Zhu J et al (2014) Small 10:3480CrossRefGoogle Scholar
  7. 7.
    Matte R et al (2010) Angew Chem Int Ed 49:4059–4062CrossRefGoogle Scholar
  8. 8.
    Radisavljevic B et al (2011) Nat Nanotechnol 6:147–150CrossRefGoogle Scholar
  9. 9.
    Nag A et al (2010) ACS Nano 4:1539–1544CrossRefGoogle Scholar
  10. 10.
    Zhang X et al (2014) Mater Res Bull 53(2014):96–101Google Scholar
  11. 11.
    Solaymani S et al (2013) Eur Phys J Appl Phys 64:11301CrossRefGoogle Scholar
  12. 12.
    Dalouji V et al (2016) Eur Phys J Plus 131:84CrossRefGoogle Scholar
  13. 13.
    Lashgari H et al (2016) Appl Surf Sci 369:76–81CrossRefGoogle Scholar
  14. 14.
    Ghodselahi T et al (2012) Eur Phys J D 66:299CrossRefGoogle Scholar
  15. 15.
    Solaymani S et al (2012) J Fusion Energ 31:591CrossRefGoogle Scholar
  16. 16.
    Arman A et al (2015) J Mater Sci: Mater Electron 26:9630–9639Google Scholar
  17. 17.
    Arman A et al (2015) Prot Met Phys Chem Surf 51:575–578CrossRefGoogle Scholar
  18. 18.
    Ţălu S et al (2016) J Microscopy 264:143–152CrossRefGoogle Scholar
  19. 19.
    Castro Neto AH et al (2009) Rev Mod Phys 81:109CrossRefGoogle Scholar
  20. 20.
    Mak KF et al (2010) Phys Rev Lett 105:136805CrossRefGoogle Scholar
  21. 21.
    Chang CH et al (2013) Phys Rev B 88:195420CrossRefGoogle Scholar
  22. 22.
    Yun WS et al (2012) Phys Rev B 85:033305CrossRefGoogle Scholar
  23. 23.
    Gutierrez HR et al (2013) Nano Lett 13:3447CrossRefGoogle Scholar
  24. 24.
    Tonndorf P et al (2013) Opt Express 21:4908CrossRefGoogle Scholar
  25. 25.
    Shi H et al (2013) Phys R ev B 87:155304CrossRefGoogle Scholar
  26. 26.
    Jang SK et al (2016) Sci Rep 6:30449CrossRefGoogle Scholar
  27. 27.
    Li Y et al (2014) Angew Chem Int Ed Engl 53:7248–7252CrossRefGoogle Scholar
  28. 28.
    Moon P, Koshino M (2014) Phys Rev B 90:155406CrossRefGoogle Scholar
  29. 29.
    Blaha P, Schwarz K, Madesen GK, Kvasnicka D, Luitz J (2001) WIEN2K, an augmented plane wave + local orbitals program for calculating crystal proper-ties. Karlheinz Schwarz Techn; Universitaetwien, WeinGoogle Scholar
  30. 30.
    Perdew JP et al (1996) Phys Rev let 77:3865CrossRefGoogle Scholar
  31. 31.
    Birch F, Geophys J (1978) Res B 83:1257–1268Google Scholar
  32. 32.
    Boochani A et al (2017) J Phys Chem C 121:3978–3986CrossRefGoogle Scholar
  33. 33.
    Yu PY, Cardona M (1999) Fundamentals of semiconductors physics and materials properties. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Kermanshah BranchIslamic Azad UniversityKermanshahIran
  2. 2.New Technologies - Research CenterUniversity of West BohemiaPilsenCzech Republic
  3. 3.Center of Excellence Geopolymer and Green Technology, School of Material EngineeringUniversity Malaysia PerlisKangarMalaysia
  4. 4.Department of PhysicsPachhunga University CollegeAizawlIndia
  5. 5.Department of Physics, North Tehran BranchIslamic Azad UniversityTehranIran
  6. 6.Department of Physics, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations