, Volume 10, Issue 5, pp 1861–1871 | Cite as

Design and Properties of New Lead-Free Solder Joints Using Sn-3.5Ag-Cu Solder

  • Rizk Mostafa Shalaby
  • Mustafa Kamal
  • Esmail Abdo Mohammed Ali
  • Mohammed S. Gumaan
Original Paper


This article aims to reduce the melting temperature of lead-free solder alloy and promote its mechanical properties. Eutectic tin-silver lead-free solder has a high melting temperature 221 C used for electronic component soldering. This melting temperature, higher than that of lead–tin conventional eutectic solder, is about 183 C. The effect of the melt spinning process and copper additions into eutectic Sn-Ag solder enhances the crystallite size to about 47.92 nm which leads to a decrease in the melting point to about 214.70 C, where the reflow process for low heat-resistant components on print circuit boards needs lower melting point solder. The results showed the presence of intermetallic compound Ag3Sn formed in nano-scale at the Sn-3.5Ag alloy due to short time solidification. The presence of new intermetallic compound, IMC from Ag0.8Sn0.2 and Ag phase improves the mechanical properties, and then enhances the micro-creep resistance especially at Sn-3.5Ag-0.7Cu. The higher Young’s modulus of Sn-3.5Ag-0.5Cu alloy 55.356 GPa could be attributed to uniform distribution of eutectic phases. Disappearance of tin whiskers in most of the lead-free melt-spun alloys indicates reduction of the internal stresses. The stress exponent (n) values for all prepared alloys were from 4.6 to 5.9, this indicates to climb deformation mechanism. We recommend that the Sn95.7-Ag3.5-Cu0.7 alloy has suitable mechanical properties, low internal friction 0.069, low pasty range 21.7 C and low melting point 214.70 C suitable for step soldering applications.


Lead-free solder Melt-spun process Microstructure Mechanical properties Melting behavior Creep resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liew MC, Ahmad I, Lee LM et al (2012) Corrosion behavior of Sn-3.0Ag-0.5Cu lead-free solder in potassium hydroxide electrolyte. Metall Mater Trans A Phys Metall Mater Sci 43:3742–3747CrossRefGoogle Scholar
  2. 2.
    Kamal M, El-Bediwi A, Lashin AR, El-Zarka AH (2011) Copper effects in mechanical properties of rapidly solidified Sn-Pb-Sb Babbitt bearing alloys. Mater Sci Eng A 530:327–332CrossRefGoogle Scholar
  3. 3.
    Rosalbino F, Angelini E, Zanicchi G, Marazza R (2008) Corrosion behaviour assessment of lead-free Sn-Ag-M (M = In, Bi, Cu) solder alloys. Mater Chem Phys 109:386–391CrossRefGoogle Scholar
  4. 4.
    Zhang XP, Yu CB, Zhang YP et al (2007) Processing treatment of a lead-free Sn-Ag-Cu-Bi solder by rapid laser-beam reflowing and the creep property of its soldered connection. J Mater Process Technol 192–193:539–542CrossRefGoogle Scholar
  5. 5.
    Suh D, Kim D, Liu P, Kim H (2007) Effects of Ag content on fracture resistance of Sn–Ag–Cu lead-free solders under high-strain rate conditions. Mater Sci Eng A 460:595–603CrossRefGoogle Scholar
  6. 6.
    Shohji I, Yoshida T, Takahashi T, Hioki S (2004) Tensile properties of Sn–Ag based lead-free solders and strain rate sensitivity. Mater Sci Eng A 366:50–55CrossRefGoogle Scholar
  7. 7.
    Sun L, Chen M, Zhang L, Yang F (2017) Microstructures evolution and properties of Sn-Ag-Cu solder joints. Acta Metall Sin 53:615–621Google Scholar
  8. 8.
    Mccormack M, Jin S (1994) Improved mechanical properties in new, Pb-free solder alloys. J Electron Mater 23:715–720CrossRefGoogle Scholar
  9. 9.
    Meschter S, Snugovsky P, Bagheri Z et al (2014) Whisker formation on SAC305 soldered assemblies. JOM 66:2320–2333CrossRefGoogle Scholar
  10. 10.
    Shohji I, Yasuda K, Takemoto T (2005) Estimation of thermal fatigue resistances of Sn-Ag and Sn-Ag-Cu lead-free solders using strain rate sensitivity index. Mater Trans 46(11):2329–2334CrossRefGoogle Scholar
  11. 11.
    Shalaby RM (2010) Effect of rapid solidification on mechanical properties of a lead free Sn-3.5Ag solder. J Alloys Compd 505:113–117CrossRefGoogle Scholar
  12. 12.
    Williamson DM, Field JE, Palmer SJP, Siviour CR (2007) Rate dependent strengths of some solder joints. J Phys D Appl Phys 40:4691–4700CrossRefGoogle Scholar
  13. 13.
    Puttlitz KJ, Galyon GT (2007) Impact of the ROHS directive on high-performance electronic systems Part I: need for lead utilization in exempt systems. Lead-Free Electron Solder A Spec Issue J Mater Sci Mater Electron 40:331–346Google Scholar
  14. 14.
    Galyon GT (2005) Annotated tin whisker bibliography and anthology. IEEE Trans Electron Packag Manuf 28:94–122CrossRefGoogle Scholar
  15. 15.
    Shin SW, Yu J (2005) Creep deformation of Sn-3.5Ag-xCu and Sn-3.5Ag-xBi solder joints. J Electron Mater 34:188–195CrossRefGoogle Scholar
  16. 16.
    Pan HJ (2011) Synthesis of Sn-3.5Ag alloy nanosolder by chemical reduction method. Mater Sci Appl 2:1480–1484Google Scholar
  17. 17.
    Tsao LC (2011) Evolution of nano-Ag3Sn particle formation on Cu-Sn intermetallic compounds of Sn3.5Ag0.5Cu composite solder/Cu during soldering. J Alloys Compd 509:2326–2333CrossRefGoogle Scholar
  18. 18.
    Rosen G, Avissar J, Gefen Y, Baram J (1987) Centrifuge melt spinning. J Phys E 20:571–574CrossRefGoogle Scholar
  19. 19.
    Kamal M, Mohammad U (2012) A review: chill-block melt spin technique, theories & applications ISBN: 978-1-60805-151-9, Bentham e Books, Bentham Science PublishersGoogle Scholar
  20. 20.
    Kamal M, Gouda E (2008) Effect of zinc additions on structure and properties of Sn–Ag eutectic lead-free solder alloy. J Mater Sci Mater Electron 19:81–84CrossRefGoogle Scholar
  21. 21.
    El-Bediwi A, Lashin AR, Mossa M, Kamal M (2011) Indentation creep and mechanical properties of quaternary Sn-Sb based alloys. Mater Sci Eng A 528:3568–3572CrossRefGoogle Scholar
  22. 22.
    Juhász A, Tasnádi P, Kovács I (1986) Superplastic indentation creep of lead—tin eutectic. J Mater Sci Lett 5:35–36CrossRefGoogle Scholar
  23. 23.
    Roumina R, Raeisinia B, Mahmudi R (2004) Room temperature indentation creep of cast Pb-Sb alloys. Scr Mater 51:497–502CrossRefGoogle Scholar
  24. 24.
    Kamal M, El-Bediwi A, Jomaan M (2012) Rapid quenching of liquid lead base alloys for high performance storage battery applications, IJET-IJENS, 12, 06Google Scholar
  25. 25.
    Duwez P, Willens RH, Klement W (1960) Metastable electron compound in Ag-Ge alloys. J Appl Phys 31:1137CrossRefGoogle Scholar
  26. 26.
    Giessen BC, Grant NJ (1965) New intermediate phases in transition metal systems, III. Acta Crystallogr 18:1080–1081CrossRefGoogle Scholar
  27. 27.
    Li JF, Agyakwa PA, Johnson CM (2012) Effect of trace Al on growth rates of intermetallic compound layers between Sn-based solders and Cu substrate. J Alloys Compd 545:70–79Google Scholar
  28. 28.
    Bieler TR, Jiang H (2006) Influence of Sn grain size and orientation on the thermomechanical response and reliability of Pb-free solder joints. IEEE Trans Compon Packag Technol 31(2):1462–1467Google Scholar
  29. 29.
    Cullity BD (1959) Elements of X-ray diffraction, vol 262. Addison-Wesley Publishing Company, USA, p 317Google Scholar
  30. 30.
    Kamal M, El-Bediwi A-B, Shalaby R, Younus M (2015) A study of eutectic indium-bismuth and indium-bismuth-tin Field’s metal rapidly solidified from melt. J Adv Phys 7:1404–1413Google Scholar
  31. 31.
    Van Arkel EA (1925) Über die Verformung des Kristallgitters von Metallen durch mechanische Bearbeitung. Physica 34:208–212Google Scholar
  32. 32.
    Williamson G, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31CrossRefGoogle Scholar
  33. 33.
    Kamal M, El-Bediwi A-B (2000) Structure, mechanical metallurgy and electrical transport properties of rapidly solidified Pb50Sn50−xBix alloys. J Mater Sci Mater Electron 11(6):519–523CrossRefGoogle Scholar
  34. 34.
    Shimoda M, Hidaka N, Watanabe H, Yoshiba M (2011) High temperature creep properties of Sn-3.5 Ag and Sn-5Sb lead-free solder alloys. Trans JWRI 40:2Google Scholar
  35. 35.
    Kumar R (2014) Effect of Ag on Sn-Cu lead free solders effect of Ag on Sn-Cu lead free solders. Thesis of PhD in Department of Metallurgical and Materials Engineering National Institute Of Technology, RourkelaGoogle Scholar
  36. 36.
    Shalaby RM (2013) Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi-Sn based lead-free solder alloys. Mater Sci Eng A 560:86–95CrossRefGoogle Scholar
  37. 37.
    Zu FQ, Zhu ZG, Zhang B et al (2001) Post-melting anomaly of Pb-Bi alloys observed by internal friction technique. J Phys Condens Matter 13:11435–11442CrossRefGoogle Scholar
  38. 38.
    Sweatman K, Mcdonald SD, Whitewick M et al. (2013) Grain refinement for improved lead-free solder joint reliability. In: Proceedings of IPC APEX EXPO Conference & Exhibition 2013, APEX EXPO 2013, San Diego, United States, pp 561–589Google Scholar
  39. 39.
    Yi-Wen C, Thomas AS (2003) Predicting tensile properties of the bulk 96.5Sn-3.5Ag lead-free solder. J Electron Mater (32) 6(2003):1–19Google Scholar
  40. 40.
    Sun L, Zhang L (2015) Properties and microstructures of Sn-Ag-Cu-X lead-free solder. Adv Mater Sci Eng 2015:1–16Google Scholar
  41. 41.
    Pandher RS, Lewis BG, Vangaveti R, Singh B (2007) Drop shock reliability of lead-free alloys—effect of micro-additives. In: Proceedings - electronic components and technology conference, pp 669–676Google Scholar
  42. 42.
    El-Ashram T, Shalaby RM (2005) Effect of rapid solidification and small additions of Zn and Bi on the structure and properties of Sn-Cu eutectic alloy. J Electron Mater 34:212–215CrossRefGoogle Scholar
  43. 43.
    Kamal M, El-Ashram T (2007) Microcreep of rapidly solidified Sn–0.7 wt.% Cu–In solder alloys. Mater Sci Eng A 456:1–4CrossRefGoogle Scholar
  44. 44.
    Shalaby RM (2015) Indium, chromium and nickel-modified eutectic Sn–0.7 wt% Cu lead-free solder rapidly solidified from molten state. J Mater Sci Mater Electron 26:6625–6632CrossRefGoogle Scholar
  45. 45.
    Lin C, Chu D (2005) Creep rupture of lead-free Sn-3. 5Ag and Sn-3. 5Ag-0. 5Cu solders. J Mater Sci Mater Electron 16:355–365CrossRefGoogle Scholar
  46. 46.
    Gumaan MS, Ali EA, Shalaby RM, Kamal M (2016) Improvement of the mechanical properties of Sn-Ag-Sb lead-free solders: effects of Sb addition and rapidly solidified. PCIM Eur 2016; Int Exhib Conf Power Electron Intell Motion, Renew Energy Energy Manag 9Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Rizk Mostafa Shalaby
    • 1
  • Mustafa Kamal
    • 1
  • Esmail Abdo Mohammed Ali
    • 2
  • Mohammed S. Gumaan
    • 1
    • 2
  1. 1.Metal Physics Laboratory, Physics Department, Faculty of ScienceMansoura UniversityMansouraEgypt
  2. 2.Basic Science Department, Faculty of EngineeringUniversity of Science and TechnologySana’aYemen

Personalised recommendations