Advertisement

Silicon

pp 1–8 | Cite as

Characterization and Luminescence Properties of Mn-Doped Zinc Borosilicate Glasses and Glass-Ceramics

  • S. A. M. Abdel-Hameed
  • Y. M. Hamdy
  • H. E. H. Sadek
Original Paper
  • 37 Downloads

Abstract

Zinc borosilicate glasses and their corresponding glass-ceramics in the system 55ZnO-25SiO2-20B2O3 (mol%) with different concentrations of MnO were prepared. The effect of MnO addition and heat treatment on phase formation, microstructure and photoluminescence properties of the glasses and glass-ceramics were characterized by means of DTA, XRD, SEM and photoluminescence spectroscopy. Differential thermal analysis (DTA) shows enhancement in the crystallization process after addition of Mn2+. From XRD, zinc borate phases are the primary crystallized phases followed by zinc silicate at higher temperature. Furthermore, cubic zinc borate and silicate phases were facilitated with increasing either the time or temperature of heat treatments. Photoluminescence results indicate the presence of Mn2+ ions in octahedral coordination in glass samples while Mn2+ ions enter the formed crystalline phases in glass ceramic samples and give their luminescence spectra according to this behavior.

Keywords

Luminescence spectroscopy Mn-doped zinc borosilicate glass Glass-ceramics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the Science and Technology Development Fund (STDF), Egypt, Grant no. 6359.

References

  1. 1.
    Jianrong Q, Hiraoanb K (1998) Solid State Commun 106:795–798CrossRefGoogle Scholar
  2. 2.
    Sohn K-S, Park E S, Kim C H, Park H D (2000) J Electrochem Soc 147:4368–4373CrossRefGoogle Scholar
  3. 3.
    Reisfeld R, Kisilev A, Jorgensen C K (1984) Chem Phys Lett 111:19–24CrossRefGoogle Scholar
  4. 4.
    Yan Q, Liu Y, Chen G, Da N, Wondraczek L (2011) J Am Ceram Soc 94:660–662CrossRefGoogle Scholar
  5. 5.
    Kawano M, Takebe H, Kuwabara M (2009) Opt Mater 32:277–280CrossRefGoogle Scholar
  6. 6.
    Chengyu L, Qiang S (2006) J Rare Earths 24:506–508CrossRefGoogle Scholar
  7. 7.
    Chengyu L, Yingning Y, Shubing W, Qiang S (2003) J Non-Cryst Solids 321:191–196CrossRefGoogle Scholar
  8. 8.
    Hamnabard Z, Khalkhali Z, Qazvini S S A, Baghshahi S, Maghsoudipour A (2012) J Lumin 132:1126–1132CrossRefGoogle Scholar
  9. 9.
    Kullberg A T G, Lopes A A S, Veiga J P B, Lima M M R A, Monteiro R C C (2016) J Non-Cryst Solids 441:79–85CrossRefGoogle Scholar
  10. 10.
    Chengyu L, Qiang S, Shubin W (2002) Mater Res Bull 37:1443–1449CrossRefGoogle Scholar
  11. 11.
    El-Shennawi AWA (1985) J Eng Sci 1:25Google Scholar
  12. 12.
    Muller R, Ulbrich C, Schuppel W, Steinmetz H, Steinbeib E (1999) J Eur Ceram Soc 19:1547–1550CrossRefGoogle Scholar
  13. 13.
    Shirk B T, Buessem W R (1970) J Am Ceram Soc 53:192–196CrossRefGoogle Scholar
  14. 14.
    Möncke D, Kamitsos E I, Herrmann A, Ehrt D, Friedrich M (2011) J Non-Cryst Solids 357:2542–2551CrossRefGoogle Scholar
  15. 15.
    Machado I E C, Prado L, Gomes L, Prison J M, Martinelli J R (2004) J Non-Cryst Solids 348:113–117CrossRefGoogle Scholar
  16. 16.
    Tanabe Y, Sugano S (1954) J Phys Soc 9:753–766CrossRefGoogle Scholar
  17. 17.
    Ronda C R, Amrein T (1996) J Lumin 69:245–248CrossRefGoogle Scholar
  18. 18.
    Thulasiramudu A, Buddhudu S (2006) J Quant Spectrosc Radiat Transf 102:212–227CrossRefGoogle Scholar
  19. 19.
    Terol S, Otero M J (1961) Z Naturforschg 16a:920–927Google Scholar
  20. 20.
    Ehrt D (2009) Int Semin Sci Technol Glass Mater 2:1–7Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Glass Research DepartmentNational Research Centre (NRC)CairoEgypt
  2. 2.Spectroscopy DepartmentNational Research Centre (NRC)CairoEgypt
  3. 3.Ceramics and Refractory DepartmentNational Research Centre (NRC)CairoEgypt

Personalised recommendations