pp 1–6 | Cite as

Pervaporation Separation of Toluene from Aqueous Solutions Using Nano-Based PEBA/NaX Mixed Matrix Membrane

  • Sina Matavos-Aramyan
  • Ghassem Bagheri
  • Mohammad Hossein Jazebizadeh
Original Paper


In the present study, pure polyether-block-amide (PEBA) membranes with different thickness (25, 50 and 75 μm) and PEBA/2 wt.% NaX mixed matrix membrane (MMM) were developed for the separation of toluene from aqueous solution via the pervaporation process. The NaX nanozeolites were synthesized using the convectional hydrothermal method. The fabricated membranes were characterized using SEM and AFM analysis. The PEBA/2 wt.% NaX MMM showed the better performance in separation factor of toluene compared with PEBA membranes during the pervaporation process The maximum pervaporation separation index was obtained in 0.01 mg/L toluene using fabricated membranes. The obtained results demonstrated the PEBA/NaX MMM could be a potential candidate for separation of volatile organic compounds from aqueous solutions. The obtained results demonstrated that the incorporation of NaX nanozeolites into the PEBA membrane is an effective method for improving the separation efficiency of volatile organic compounds from aqueous solutions.


PEBA NaX nanozeolite Polymer membranes Toluene Pervaporation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iravaninia M, Mirfendereski M, Mohammadi T (2012) Pervaporation separation of toluene/n-heptane mixtures using a MSE-modified membrane: effects of operating conditions. Chem Eng Res Des 90:397–408CrossRefGoogle Scholar
  2. 2.
    Cheng X, Pan F, Wang M, Li W, Song Y, Liu G, Yang H, Gao B, Wu H, Jiang Z (2017) Hybrid membranes for pervaporation separations. J Membr Sci 541:329–346CrossRefGoogle Scholar
  3. 3.
    Matavos-Aramyan S, Moussavi M, Matavos-Aramyan H, Roozkhosh S (2017) Cryptosporidium-contaminated water disinfection by a novel Fenton process. Free Radic Biol Med 106: 158–167CrossRefGoogle Scholar
  4. 4.
    Moussavi M, Matavos-Aramyan S (2016) Chelate-modified fenton treatment of sulfidic spent caustic, Korean. J Chem Eng 33:2384–2391Google Scholar
  5. 5.
    Kujawski W, Roszak R (2002) Pervaporative removal of volatile organic compounds from multicomponent aqueous mixtures. Sep Sci Technol 37:3559–3575CrossRefGoogle Scholar
  6. 6.
    Rdzanek P, Marszałek J, Kamiński W (2017) Biobutanol concentration by pervaporation using supported ionic liquid membranes. Sep Purif Technol.
  7. 7.
    Panek D, Konieczny K (2007) Preparation and applying the membranes with carbon black to pervaporation of toluene from the diluted aqueous solutions. Sep Purif Technol 57:507–512CrossRefGoogle Scholar
  8. 8.
    Panek D, Konieczny K (2008) Applying filled and unfilled polyether-block-amide membranes to separation of toluene from wastewaters by pervaporation. Desalination 222:280–285CrossRefGoogle Scholar
  9. 9.
    Jazebizadeh MH, Khazraei S (2017) Investigation of methane and carbon dioxide gases permeability through PEBAX/PEG/ZnO nanoparticle mixed matrix membrane. Silicon 9:775–784CrossRefGoogle Scholar
  10. 10.
    Matavos-Aramyan S, Neysari S, Jazebizadeh MH (2017) Fabrication, application and mathematical modeling of a new diamine/trimesoyl chloride reverse osmosis composite membrane for copper sulfate desalination from wastewaters. Silicon 9:829– 840CrossRefGoogle Scholar
  11. 11.
    Liu S, Liu G, Zhao X, Jin W (2013) Hydrophobic-ZIF-71 filled PEBA mixed matrix membranes for recovery of biobutanol via pervaporation. J Membr Sci 446:181–188CrossRefGoogle Scholar
  12. 12.
    Yi S, Wan Y (2017) Volatile organic compounds (VOCs) recovery from aqueous solutions via pervaporation with vinyltriethoxysilane-grafted-silicalite-1/polydimethylsiloxane mixed matrix membrane. Chem Eng J 313:1639–1646CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Benes NE, Lammertink RGH (2016) Performance study of pervaporation in a microfluidic system for the removal of acetone from water. Chem Eng J 284:1342–1347CrossRefGoogle Scholar
  14. 14.
    Yave W (2017) The improved pervaporation PERVAP membranes. Filtr Sep 54:14–15CrossRefGoogle Scholar
  15. 15.
    Harvianto GR, Ahmad F, Lee M (2017) A hybrid reactive distillation process with high selectivity pervaporation for butyl acetate production via transesterification. J Membr Sci 543:49–57CrossRefGoogle Scholar
  16. 16.
    Liu X, Li Y, Liu Y, Zhu G, Liu J, Yang W (2011) Capillary supported ultrathin homogeneous silicalite-poly(dimethylsiloxane) nanocomposite membrane for bio-butanol recovery. J Membr Sci 369:228–232CrossRefGoogle Scholar
  17. 17.
    Boom JP, Pünt IGM, Zwijnenberg H, de Boer R, Bargeman D, Smolders CA, Strathmann H (1998) Transport through zeolite filled polymeric membranes. J Membr Sci 138:237–258CrossRefGoogle Scholar
  18. 18.
    Gu J, Shi X, Bai Y, Zhang H, Zhang L, Huang H (2009) Silicalite-filled PEBA membranes for recovering ethanol from aqueous solution by pervaporation. Chem Eng Technol 32:155–160CrossRefGoogle Scholar
  19. 19.
    Gu J, Zhang X, Bai Y, Yang L, Zhang C, Sun Y (2013) ZSM-5 filled polyether block amide membranes for separating ea from aqueous solution by pervaporation. Int J Polym Sci 2013(Article ID 760156):10. Google Scholar
  20. 20.
    te Hennepe HJC, Bargeman D, Mulder MHV, Smolders CA (1987) Zeolite-filled silicone rubber membranes: Part 1. Membrane preparation and pervaporation results. J Membr Sci 35: 39–55CrossRefGoogle Scholar
  21. 21.
    Vankelecom IFJ, Depre D, De Beukelaer S, Uytterhoeven JB (1995) Influence of zeolites in PDMS membranes: pervaporation of water/alcohol mixtures. J Phys Chem 99:13193–13197CrossRefGoogle Scholar
  22. 22.
    Nagasawa H, Tsuru T (2017) Chapter 9—silica membrane application for pervaporation process A2 - Basile, Angelo. In: Ghasemzadeh K (ed) Current trends and future developments on (bio-) membranes. Elsevier, Amsterdam, pp 217–241Google Scholar
  23. 23.
    Sunitha K, Yamuna Rani K, Moulik S, Satyanarayana SV, Sridhar S (2013) Separation of NMP/water mixtures by nanocomposite PEBA membrane: part I. Membrane synthesis, characterization and pervaporation performance. Desalination 330:1–8CrossRefGoogle Scholar
  24. 24.
    Irani M, Rad LR, Pourahmad H, Haririan I (2015) Optimization of the combined adsorption/photo-Fenton method for the simultaneous removal of phenol and paracetamol in a binary system. Microporous Mesoporous Mater 206:1–7CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Shiraz BranchIslamic Azad UniversityShirazIran
  2. 2.Department of Chemical Engineering, Faculty of Engineering, Shiraz BranchIslamic Azad UniversityShirazIran

Personalised recommendations