Intraoperative cerebral oximetry-based management for optimizing perioperative outcomes: a meta-analysis of randomized controlled trials

  • Andres Zorrilla-Vaca
  • Ryan Healy
  • Michael C. Grant
  • Brijen Joshi
  • Lucia Rivera-Lara
  • Charles Brown
  • Marek A. Mirski
Reports of Original Investigations

Abstract

Purpose

Although evidence from observational studies in a variety of clinical settings supports the utility of cerebral oximetry as a predictor of outcomes, prospective clinical trials thus far have reported conflicting results. This systematic review and meta-analysis was designed to evaluate the influence of management associated with intraoperative cerebral oximetry on postoperative outcomes. The primary outcome was postoperative cognitive dysfunction (POCD), with secondary outcomes that included postoperative delirium, length of intensive care unit (ICU) stay, and hospital length of stay (LOS).

Source

After searching the PubMed, EMBASE, Cochrane Library, Scopus, and Google Scholar databases, all randomized controlled trials (RCTs) assessing the impact of intraoperative cerebral oximetry-guided management on clinical outcomes following surgery were identified.

Principal findings

Fifteen RCTs comprising 2,057 patients (1,018 in the intervention group and 1,039 in control group) were included. Intraoperative management guided by the use of cerebral oximetry was associated with a reduction in the incidence of POCD (risk ratio [RR] 0.54; 95% confidence interval [CI], 0.33 to 0.90; P = 0.02; I2 = 85%) and a significantly shorter length of ICU stay (standardized mean difference [SMD], −0.21 hr; 95% CI, −0.37 to −0.05; P = 0.009; I2 = 48%). In addition, overall hospital LOS (SMD, −0.06 days; 95% CI, −0.18 to 0.06; P = 0.29; I2 = 0%) and incidence of postoperative delirium (RR, 0.69; 95% CI, 0.36 to 1.32; P = 0.27; I2 = 0%) were not impacted by the use of intraoperative cerebral oximetry.

Conclusions

Intraoperative cerebral oximetry appears to be associated with a reduction in POCD, although this result should be interpreted with caution given the significant heterogeneity in the studies examined. Further large (ideally multicentre) RCTs are needed to clarify whether POCD can be favourably impacted by the use of cerebral oximetry-guided management.

Gestion peropératoire basée sur l’oxymétrie cérébrale pour améliorer les résultats périopératoires : méta-analyse d’essais randomisés contrôlés

Résumé

Objectif

Alors que les données probantes provenant d’études observationnelles réalisées dans différents cadres cliniques témoignent de l’intérêt de l’oxymétrie cérébrale comme élément prédictif des résultats, les essais cliniques prospectifs ont — jusqu’à ce jour — fourni des résultats contradictoires. Cette étude et méta-analyse systématique a été conçue pour évaluer l’influence de la gestion associée à l’oxymétrie cérébrale peropératoire sur les résultats postopératoires. Le critère d’évaluation principal était la dysfonction cognitive postopératoire (POCD) et les critères d’évaluation secondaires étaient, notamment, le délirium postopératoire, la durée du séjour en unité de soins intensifs (USI) et la durée de séjour à l’hôpital (DSH).

Source

Après une recherche dans les bases de données PubMed, EMBASE, Cochrane Library, Scopus et Google Scholar, tous les essais contrôlés randomisés (ECR) évaluant l’impact de la gestion peropératoire guidée par l’oxymétrie cérébrale sur les résultats cliniques postopératoires ont été identifiés.

Constatations principales

Quinze essais cliniques randomisés ayant inclus 2 057 patients (1 018 dans le groupe interventionnel et 1 039 dans le groupe témoin) ont été inclus. La gestion peropératoire guidée par l’utilisation de l’oxymétrie cérébrale a été associée à une réduction de l’incidence du POCD (rapport de risque [RR] 0,54; intervalle de confiance à 95 % [IC] : 0,33 à 0,90; P = 0,02; I2 = 85 %) et à une plus brève durée de séjour en USI (différence moyenne standardisée [SMD] : −0,21 h; IC à 95 % : −0,37 à −0,05; P = 0,009; I2 = 48 %). De plus, la durée de séjour globale à l’hôpital (SMD : −0,06 jour; IC à 95 % : −0,18 à 0,06; P = 0,29; I2 = 0 %) et l’incidence du delirium postopératoire (RR : 0,69; IC à 95 % : 0,36 à 1,32; P = 0,27; I2 = 0 %) n’ont pas été affectées par l’utilisation de l’oxymétrie cérébrale peropératoire.

Conclusions

L’oxymétrie cérébrale peropératoire semble associée à une réduction du POCD, mais ce résultat doit être interprété avec prudence compte tenu de l’importante hétérogénéité entre les études analysées. D’autres essais cliniques randomisés avec suffisamment de patients (idéalement multicentriques) sont nécessaires pour savoir si le POCD peut être favorablement influencé par l’utilisation de la gestion cérébrale guidée par oxymétrie.

Notes

Conflicts of interest

Dr. Lucia Rivera Lara received a grant from Medtronic/Covidien, Dublin, Ireland.

Author contributions

Andres Zorrilla-Vaca contributed to the study conception and design, drafting the manuscript, acquisition of data, and analysis and interpretation of data. Ryan Healy was involved in drafting the manuscript and literature search. Michael C. Grant was involved in drafting the manuscript and revising it for important intellectual content. Brijen Joshi was involved in drafting the manuscript and revising it for important intellectual content. Lucia Rivera-Lara was involved in drafting the manuscript and revising it for important intellectual content. Charles Brown was involved in drafting the manuscript and revising it for important intellectual content. Marek A. Mirski was involved in drafting the manuscript and revising it for important intellectual content.

Editorial responsibility

This submission was handled by Dr. Hilary P. Grocott, Editor-in-Chief, Canadian Journal of Anesthesia.

Financial support

There was no funding source for this study. No authors were paid to write this article.

Supplementary material

12630_2018_1065_MOESM1_ESM.pdf (272 kb)
Supplementary material 1 (PDF 272 kb)
12630_2018_1065_MOESM2_ESM.pdf (45 kb)
Table Assessment of Study Quality. Supplementary material 2 (PDF 45 kb)

References

  1. 1.
    Green MS, Sehgal S, Tariq R. Near-infrared spectroscopy: the new must have tool in the intensive care unit? Semin Cardiothorac Vasc Anesth 2016; 20: 213-24.CrossRefPubMedGoogle Scholar
  2. 2.
    Moerman A, De Hert S. Cerebral oximetry: the standard monitor of the future? Curr Opin Anaesthesiol 2015; 28: 703-9.CrossRefPubMedGoogle Scholar
  3. 3.
    Mailhot T, Cossette S, Lambert J, Cournoyer A, Denault AY. Cerebral oximetry as a biomarker of postoperative delirium in cardiac surgery patients. J Crit Care 2016; 34: 17-23.CrossRefPubMedGoogle Scholar
  4. 4.
    Sun X, Ellis J, Corso PJ, et al. Mortality predicted by preinduction cerebral oxygen saturation after cardiac operation. Ann Thorac Surg 2014; 98: 91-6.CrossRefPubMedGoogle Scholar
  5. 5.
    Schoen J, Meyerrose J, Paarmann H, Heringlake M, Hueppe M, Berger KU. Preoperative regional cerebral oxygen saturation is a predictor of postoperative delirium in on-pump cardiac surgery patients: a prospective observational trial. Crit Care 2011; 15: R218.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Parnia S, Yang J, Nguyen R, et al. Cerebral oximetry during cardiac arrest: a multicenter study of neurologic outcomes and survival. Crit Care Med 2016; 44: 1663-74.CrossRefPubMedGoogle Scholar
  7. 7.
    Cowie DA, Nazareth J, Story DA. Cerebral oximetry to reduce perioperative morbidity. Anaesth Intensive Care 2014; 42: 310-4.PubMedGoogle Scholar
  8. 8.
    Ono M, Brady K, Easley RB, et al. Duration and magnitude of blood pressure below cerebral autoregulation threshold during cardiopulmonary bypass is associated with major morbidity and operative mortality. J Thorac Cardiovasc Surg 2014; 147: 483-9.CrossRefPubMedGoogle Scholar
  9. 9.
    Vohra HA, Modi A, Ohri SK. Does use of intra-operative cerebral regional oxygen saturation monitoring during cardiac surgery lead to improved clinical outcomes? Interact Cardiovasc Thorac Surg 2009; 9: 318-22.CrossRefPubMedGoogle Scholar
  10. 10.
    Sanfilippo F, Serena G, Corredor C, et al. Cerebral oximetry and return of spontaneous circulation after cardiac arrest: a systematic review and meta-analysis. Resuscitation 2015; 94: 67-72.CrossRefPubMedGoogle Scholar
  11. 11.
    Severdija EE, Vranken NP, Teerenstra S, Ganushchak YM, Weerwind PW. Impact of intraoperative events on cerebral tissue oximetry in patients undergoing cardiopulmonary bypass. J Extra Corpor Technol 2015; 47: 32-7.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Funk DJ, Kumar A, Klar G. Decreases in cerebral saturation in patients with septic shock are associated with increased risk of death: a prospective observational single center study. J Intensive Care 2016; 4: 42.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fischer GW, Lin HM, Krol M, et al. Noninvasive cerebral oxygenation may predict outcome in patients undergoing aortic arch surgery. J Thorac Cardiovasc Surg 2011; 141: 815-21.CrossRefPubMedGoogle Scholar
  14. 14.
    Goldman SM, Sutter FP, Wertan MA, Ferdinand FD, Trace CL, Samuels LE. Outcome improvement and cost reduction in an increasingly morbid cardiac surgery population. Semin Cardiothorac Vasc Anesth 2006; 10: 171-5.CrossRefPubMedGoogle Scholar
  15. 15.
    Moher D, Liberati A, Tetzlaff J. Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Higami T, Kozawa S, Asada T, et al. Retrograde cerebral perfusion versus selective cerebral perfusion as evaluated by cerebral oxygen saturation during aortic arch reconstruction. Ann Thorac Surg 1999; 67: 1091-6.CrossRefPubMedGoogle Scholar
  17. 17.
    Deschamps A, Hall R, Grocott H, et al. Cerebral oximetry monitoring to maintain normal cerebral oxygen saturation during high-risk cardiac surgery: a randomized controlled feasibility trial. Anesthesiology 2016; 124: 826-36.CrossRefPubMedGoogle Scholar
  18. 18.
    Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011; 343: d5928.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Berg AO, Allan JD. Introducing the third US Preventive Services Task Force. Am J Prevent Med 2001; 20(3 Suppl): 3-4.CrossRefGoogle Scholar
  20. 20.
    Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014; 14: 135.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-34.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials 2007; 28: 105-14.CrossRefPubMedGoogle Scholar
  23. 23.
    Lomivorotov VV, Perovskiy P, Fominskiy E, et al. Cerebral oximetry in reducing postoperative morbidity in high-risk cardiac surgery. J Cardiothorac Vasc Anesth 2017; 31: S48-9.CrossRefGoogle Scholar
  24. 24.
    Trafidlo T, Gaszynski T, Gaszynski W, Nowakowska-Domagala K. Intraoperative monitoring of cerebral NIRS oximetry leads to better postoperative cognitive performance: a pilot study. Int J Surg 2015; 16(Pt A): 23-30.Google Scholar
  25. 25.
    Cho SY, Kim SJ, Jeong CW, et al. Under general anesthesia arginine vasopressin prevents hypotension but impairs cerebral oxygenation during arthroscopic shoulder surgery in the beach chair position. Anesth Analg 2013; 117: 1436-43.CrossRefPubMedGoogle Scholar
  26. 26.
    Fassoulaki A, Kaliontzi H, Petropoulos G, Tsaroucha A. The effect of desflurane and sevoflurane on cerebral oximetry under steady-state conditions. Anesth Analg 2006; 102: 1830-5.CrossRefPubMedGoogle Scholar
  27. 27.
    Guclu CY, Unver S, Aydinli B, Kazanci D, Dilber E, Ozgok A. The effect of sevoflurane vs. TIVA on cerebral oxygen saturation during cardiopulmonary bypass–randomized trial. Adv. Clin Exp Med 2014; 23: 919-24.Google Scholar
  28. 28.
    Kok WF, van Harten AE, Koene BM, et al. A pilot study of cerebral tissue oxygenation and postoperative cognitive dysfunction among patients undergoing coronary artery bypass grafting randomised to surgery with or without cardiopulmonary bypass. Anaesthesia 2014; 69: 613-22.CrossRefPubMedGoogle Scholar
  29. 29.
    Mayr NP, Hapfelmeier A, Martin K, et al. Comparison of sedation and general anaesthesia for transcatheter aortic valve implantation on cerebral oxygen saturation and neurocognitive outcome. Br J Anaesth 2016; 116: 90-9.CrossRefPubMedGoogle Scholar
  30. 30.
    Meng L, Cannesson M, Alexander BS, et al. Effect of phenylephrine and ephedrine bolus treatment on cerebral oxygenation in anaesthetized patients. Br J Anaesth 2011; 107: 209-17.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Murphy GS, Szokol JW, Marymont JH, et al. Cerebral oxygen desaturation events assessed by near-infrared spectroscopy during shoulder arthroscopy in the beach chair and lateral decubitus positions. Anesth Analg 2010; 111: 496-505.CrossRefPubMedGoogle Scholar
  32. 32.
    Taussky P, O’Neal B, Daugherty WP, et al. Validation of frontal near-infrared spectroscopy as noninvasive bedside monitoring for regional cerebral blood flow in brain-injured patients. Neurosurg Focus 2012; 32: E2.CrossRefPubMedGoogle Scholar
  33. 33.
    Valencia L, Rodriguez-Perez A, Kuhlmorgen B, Santana RY. Does sevoflurane preserve regional cerebral oxygen saturation measured by near-infrared spectroscopy better than propofol? Ann Fr Anesth Reanim 2014; 33: e59-65.CrossRefPubMedGoogle Scholar
  34. 34.
    Picton P, Dering A, Alexander A, et al. Influence of ventilation strategies and anesthetic techniques on regional cerebral oximetry in the beach chair position: a prospective interventional study with a randomized comparison of two anesthetics. Anesthesiology 2015; 123: 765-74.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Baker RA, Knight JL. The OXICAB trial: cerebral oximetry in adult cardiac surgical patients. J Extra Corpor Technol 2006; 38: 77.PubMedGoogle Scholar
  36. 36.
    Iglesias I, Murkin J, Bainbridge D, Adams S. Monitoring cerebral oxygen saturation significantly decreases postoperative length of stay: a prospective randomized blinded study. Heart Surg Forum 2003: 204 (abstract).Google Scholar
  37. 37.
    Hu Z, Xu L, Zhu Z, Seal R, McQuillan PM. Effects of hypothermic cardiopulmonary bypass on internal jugular bulb venous oxygen saturation, cerebral oxygen saturation, and bispectral index in pediatric patients undergoing cardiac surgery: a prospective study. Medicine (Baltimore) 2016; 95: e2483.CrossRefGoogle Scholar
  38. 38.
    Vretzakis G, Georgopoulou S, Stamoulis K, et al. Monitoring of brain oxygen saturation (INVOS) in a protocol to direct blood transfusions during cardiac surgery: a prospective randomized clinical trial. J Cardiothorac Surg 2013; 8: 145.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zogogiannis I, Iatrou C, Lazarides MK, et al. Evaluation of an intraoperative algorithm based on near-infrared refracted spectroscopy monitoring, in the intraoperative decision for shunt placement, in patients undergoing carotid endarterectomy. Middle East J Anaesthesiol 2011; 21: 367-73.PubMedGoogle Scholar
  40. 40.
    Casati A, Fanelli G, Pietropaoli P, et al. Continuous monitoring of cerebral oxygen saturation in elderly patients undergoing major abdominal surgery minimizes brain exposure to potential hypoxia. Anesth Analg 2005; 101: 740-7.CrossRefPubMedGoogle Scholar
  41. 41.
    Colak Z, Borojevic M, Bogovic A, Ivancan V, Biocina B, Majeric-Kogler V. Influence of intraoperative cerebral oximetry monitoring on neurocognitive function after coronary artery bypass surgery: a randomized, prospective study. Eur J Cardiothorac Surg 2015; 47: 447-54.CrossRefPubMedGoogle Scholar
  42. 42.
    Deschamps A, Lambert J, Couture P, et al. Reversal of decreases in cerebral saturation in high-risk cardiac surgery. J Cardiothorac Vasc Anesth 2013; 27: 1260-6.CrossRefPubMedGoogle Scholar
  43. 43.
    Kara I, Erkin A, Sacli H, et al. The effects of near-infrared spectroscopy on the neurocognitive functions in the patients undergoing coronary artery bypass grafting with asymptomatic carotid artery disease: a randomized prospective study. Ann Thorac Cardiovasc Surg 2015; 21: 544-50.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mohandas BS, Jagadeesh AM, Vikram SB. Impact of monitoring cerebral oxygen saturation on the outcome of patients undergoing open heart surgery. Ann Cardiac Anaesth 2013; 16: 102-6.CrossRefGoogle Scholar
  45. 45.
    Murkin JM, Adams SJ, Novick RJ, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg 2007; 104: 51-8.CrossRefPubMedGoogle Scholar
  46. 46.
    Slater JP, Guarino T, Stack J, et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg 2009; 87: 36-44; discussion 44-5.Google Scholar
  47. 47.
    Cohn SM, Pearl RG, Acosta SM, et al. A prospective randomized pilot study of near-infrared spectroscopy-directed restricted fluid therapy versus standard fluid therapy in patients undergoing elective colorectal surgery. Am Surg 2010; 76: 1384-92.PubMedGoogle Scholar
  48. 48.
    Ballard C, Jones E, Gauge N, et al. Optimised anaesthesia to reduce post operative cognitive decline (POCD) in older patients undergoing elective surgery, a randomised controlled trial. PloS One 2012; 7: e37410.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lei L, Katznelson R, Fedorko L, et al. Cerebral oximetry and postoperative delirium after cardiac surgery: a randomised, controlled trial. Anaesthesia 2017; 72: 1456-66.CrossRefPubMedGoogle Scholar
  50. 50.
    Rogers C, Stoica S, Ellis L, et al. Randomized trial of near-infrared spectroscopy for personalized optimization of cerebral tissue oxygenation during cardiac surgery. Br J Anaesth 2017; 119: 384-93.CrossRefPubMedGoogle Scholar
  51. 51.
    Denault A, Deschamps A, Murkin JM. A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy. Semin Cardiothorac Vasc Anesth 2007; 11: 274-81.CrossRefPubMedGoogle Scholar
  52. 52.
    Cournoyer A, Iseppon M, Chauny JM, Denault A, Cossette S, Notebaert E. Near-infrared spectroscopy monitoring during cardiac arrest: a systematic review and meta-analysis. Acad Emerg Med 2016; 23: 851-62.CrossRefPubMedGoogle Scholar
  53. 53.
    Taillefer MC, Denault AY. Cerebral near-infrared spectroscopy in adult heart surgery: systematic review of its clinical efficacy. Can J Anesth 2005; 52: 79-87.CrossRefPubMedGoogle Scholar
  54. 54.
    Sorensen H, Grocott HP, Secher NH. Near infrared spectroscopy for frontal lobe oxygenation during non-vascular abdominal surgery. Clin Physiol Funct Imaging 2016; 36: 427-35.CrossRefPubMedGoogle Scholar
  55. 55.
    Rivera-Lara L, Zorrilla-Vaca A, Geocadin R, et al. Predictors of outcome with cerebral autoregulation monitoring: a systematic review and meta-analysis. Crit Care Med 2017; 45: 695-704.CrossRefPubMedGoogle Scholar
  56. 56.
    Rivera-Lara L, Zorrilla-Vaca A, Geocadin RG, Healy RJ, Ziai W, Mirski MA. Cerebral autoregulation-oriented therapy at the bedside: a comprehensive review. Anesthesiology 2017; 126: 1187-99.CrossRefPubMedGoogle Scholar
  57. 57.
    Douds MT, Straub EJ, Kent AC, Bistrick CH, Sistino JJ. A systematic review of cerebral oxygenation-monitoring devices in cardiac surgery. Perfusion 2014; 29: 545-52.CrossRefPubMedGoogle Scholar
  58. 58.
    Zheng F, Sheinberg R, Yee MS, Ono M, Zheng Y, Hogue CW. Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review. Anesth Analg 2013; 116: 663-76.CrossRefPubMedGoogle Scholar
  59. 59.
    Green DW, Kunst G. Cerebral oximetry and its role in adult cardiac, non-cardiac surgery and resuscitation from cardiac arrest. Anaesthesia 2017; 72(Suppl 1): 48-57.CrossRefPubMedGoogle Scholar
  60. 60.
    Lopez MG, Pandharipande P, Morse J, et al. Intraoperative cerebral oxygenation, oxidative injury, and delirium following cardiac surgery. Free Radic Biol Med 2017; 103: 192-8.CrossRefPubMedGoogle Scholar
  61. 61.
    Wacker P, Nunes PV, Cabrita H, Forlenza OV. Post-operative delirium is associated with poor cognitive outcome and dementia. Dement Geriatr Cogn Disord 2006; 21: 221-7.CrossRefPubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2018

Authors and Affiliations

  1. 1.School of MedicineUniversidad del Valle, Hospital Universitario del ValleCaliColombia
  2. 2.Department of Anesthesiology & Critical Care MedicineThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Program of Medicine and Surgery, Faculty of HealthUniversidad del ValleCaliColombia

Personalised recommendations