Hot ductility behavior of a Fe-0.3C-9Mn-2Al medium Mn steel

Abstract

The hot ductility of an Fe-0.3C-9Mn-2Al medium Mn steel was investigated using a Gleeble3800 thermo-mechanical simulator. Hot tensile tests were conducted at different temperatures (600–1300°C) under a constant strain rate of 4 × 10−3 s−1. The fracture behavior and mechanism of hot ductility evolution were discussed. Results showed that the hot ductility decreased as the temperature was decreased from 1000°C. The reduction of area (RA) decreased rapidly in the specimens tested below 700°C, whereas that in the specimen tested at 650°C was lower than 65%. Mixed brittle-ductile fracture feature is reflected by the coexistence of cleavage step, intergranular facet, and dimple at the surface. The fracture belonged to ductile failure in the specimens tested between 720–1000°C. Large and deep dimples could delay crack propagation. The change in average width of the dimples was in positive proportion with the change in RA. The wide austenite-ferrite inter-critical temperature range was crucial for the hot ductility of medium Mn steel. The formation of ferrite film on austenite grain boundaries led to strain concentration. Yield point elongation occurred at the austenite-ferrite intercritical temperature range during the hot tensile test.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, and M.X. Huang, High dislocation density-induced large ductility in deformed and partitioned steels, Science, 357(2017), No. 6355, p. 1029.

    CAS  Article  Google Scholar 

  2. [2]

    P.K. Xia, F. Vercruysse, R. Petrov, I. Sabirov, M. Castillo-Rodríguez, and P. Verleysen, High strain rate tensile behavior of a quenching and partitioning (Q&P) Fe-0.25C-1.5Si-3.0Mn steel, Mater. Sci. Eng. A, 745(2019), p. 53.

    CAS  Article  Google Scholar 

  3. [3]

    A. Grajcar, R. Kuziak, and W. Zalecki, Third generation of AHSS with increased fraction of retained austenite for the automotive industry, Arch. Civ. Mech. Eng., 12(2012), No. 3, p. 334.

    Article  Google Scholar 

  4. [4]

    K. Lu, The future of metals, Science, 328(2010), No. 5976, p. 319.

    CAS  Article  Google Scholar 

  5. [5]

    J.W. Zhao and Z.Y. Jiang, Thermomechanical processing of advanced high strength steels, Prog. Mater Sci., 94(2018), p. 174.

    CAS  Article  Google Scholar 

  6. [6]

    P. Lan, H.Y. Tang, and J.Q. Zhang, Hot ductility of high alloy Fe-Mn-C austenite TWIP steel, Mater. Sci. Eng. A, 660(2016), p. 127.

    CAS  Article  Google Scholar 

  7. [7]

    B.H. Chen and H. Yu, Hot ductility behavior of V-N and V-Nb microalloyed steels, Int. J. Miner. Metall. Mater., 19(2012), No. 6, p. 525.

    Article  Google Scholar 

  8. [8]

    C.H. Lee, J.Y. Park, J.H. Chung, D.B. Park, J.Y. Jang, S. Huh, S.J. Kim, J.Y. Kang, J. Moon, and T.H. Lee, Hot ductility of medium carbon steel with vanadium, Mater. Sci. Eng. A, 651(2016), p. 192.

    CAS  Article  Google Scholar 

  9. [9]

    I. Mejía, A. Bedolla-Jacuinde, C. Maldonado, and J.M. Cabrera, Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron, Mater. Sci. Eng. A, 528(2011), No. 13–14, p. 4468.

    Article  Google Scholar 

  10. [10]

    B. Hu, H.W. Luo, F. Yang, and H. Dong, Recent progress in medium-Mn steels made with new designing strategies, a review, J. Mater. Sci. Technol., 33(2017), No. 12, p. 1457.

    CAS  Article  Google Scholar 

  11. [11]

    J.T. Benzing, A. Kwiatkowski Da Silva, L. Morsdorf, J. Bentley, D. Ponge, A. Dutta, J. Han, J.R. McBride, B. Van Leer, B. Gault, D. Raabe, and J.E. Wittig, Multi-scale characterization of austenite reversion and martensite recovery in a cold-rolled medium-Mn steel, Acta Mater., 166(2019), p. 512.

    CAS  Article  Google Scholar 

  12. [12]

    D.W. Suh and S.J. Kim, Medium Mn transformation-induced plasticity steels: Recent progress and challenges, Srripta Mater., 126(2017), p. 63.

    CAS  Article  Google Scholar 

  13. [13]

    K. Steineder, D. Krizan, R. Schneider, C. Béal, and C. Sommitsch, On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels, Acta Mater., 139(2017), p. 39.

    CAS  Article  Google Scholar 

  14. [14]

    J. Hu, J.M. Zhang, G.S. Sun, L.X. Du, Y. Liu, Y. Dong, and R.D.K. Misra, High strength and ductility combination in nano-/ultrafine-grained medium-Mn steel by tuning the stability of reverted austenite involving intercritical annealing, J. Mater. Sci., 54(2019), No. 8, p. 6565.

    CAS  Article  Google Scholar 

  15. [15]

    M.H. Kang, J.S. Lee, Y.M. Koo, S.J. Kim, and N.H. Heo, Correlation between MnS precipitation, sulfur segregation kinetics, and hot ductility in C-Mn steel, Metall. Mater. Trans. A, 45(2014), No. 12, p. 5295.

    CAS  Article  Google Scholar 

  16. [16]

    Y. Ma, W.W. Song, S.X. Zhou, A. Schwedt, and W. Bleck, Influence of intercritical annealing temperature on microstructure and mechanical properties of a cold-rolled medium-Mn steel, Metals, 8(2018), No. 5, p. 357.

    Article  Google Scholar 

  17. [17]

    N. Nakada, K. Mizutani, T. Tsuchiyama, and S. Takaki, Difference in transformation behaviour between ferrite and austenite formations in medium manganese steel, Acta Mater., 65(2014), p. 251.

    CAS  Article  Google Scholar 

  18. [18]

    J.Y. Li and G.G. Cheng, Hot ductility of Cr15Mn7Ni4N austenitic stainless steel, J. Mater. Res. Technol., 9(2020), No. 1, p. 52.

    Article  Google Scholar 

  19. [19]

    B. G. Thomas, J.K. Brimacombe, and I. V. Samarasekera, The formation of panel cracks in steel ingots: A state-of-the-art review-I. hot ductility of steel, ISS Trans., 7(1986), p. 7.

    CAS  Google Scholar 

  20. [20]

    S.C. Seo, K.S. Son, S.K. Lee, I. Kim, T.J. Lee, C. Yim, and D. Kim, Variation of hot ductility behavior in as-cast and remelted steel slab, Met. Mater. Int., 14(2008), No. 5, p. 559.

    CAS  Article  Google Scholar 

  21. [21]

    H.B. Liu, J.H. Liu, B.W. Wu, Y.Z. Shen, Y. He, H. Ding, and X.F. Su, Effect of Mn and Al contents on hot ductility of high alloy Fe-xMn-C-yAl austenite TWIP steels, Mater. Sci. Eng. A, 708(2017), p. 360.

    CAS  Article  Google Scholar 

  22. [22]

    G. Sahoo, B. Singh, and A. Saxena, Effect of strain rate, soaking time and alloying elements on hot ductility and hot shortness of low alloy steels, Mater. Sci. Eng. A, 718(2018), p. 292.

    CAS  Article  Google Scholar 

  23. [23]

    Z. Lu, H.T. Zhang, and B.R. Wu, Effect of niobium on hot ductility of low C-Mn-steel under continuous casting simulation conditions, Steel Res. Int., 61(1990), No. 12, p. 620.

    CAS  Article  Google Scholar 

  24. [24]

    D.P. Yang, D. Wu, and H.L. Yi, Reverse transformation from martensite into austenite in a medium-Mn steel, Scripta Mater., 161(2019), p. 1.

    CAS  Article  Google Scholar 

  25. [25]

    A.S. Hamada and L.P. Karjalainen, Hot ductility behaviour of high-Mn TWIP steels, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1819.

    Article  Google Scholar 

  26. [26]

    J.R. Li, T. He, L.J. Cheng, P.F. Zhang, and L.W. Wang, Effect of precipitates on the hot embrittlement of 11Cr-3Co-3W martensitic heat resistant steel for turbine high temperature stage blades in ultra-supercritical power plants, Mater. Sci. Eng. A, 763(2019), p. 138187.

    CAS  Article  Google Scholar 

  27. [27]

    T. Tu, X.H. Chen, J. Chen, C.Y. Zhao, and F.S. Pan, A high-ductility Mg-Zn-Ca magnesium alloy, Acta Metall. Sinica Engl. Lett., 32(2019), No. 1, p. 23.

    CAS  Article  Google Scholar 

  28. [28]

    P.Y. Wen, J.S. Han, H.W. Luo, and X.P. Mao, Effect of flash processing on recrystallization behavior and mechanical performance of cold-rolled IF steel, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1234.

    CAS  Article  Google Scholar 

  29. [29]

    H.W. Luo, H. Dong, and M.X. Huang, Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels, Mater. Des., 83(2015), p. 42.

    CAS  Article  Google Scholar 

  30. [30]

    B.C. De Cooman, S.J. Lee, and S. Shin, E.J. Seo, J.G. Speer, Combined intercritical annealing and Q&P processing of medium Mn steel, Metall. Mater. Trans. A, 48(2017), No. 1, p. 39.

    CAS  Article  Google Scholar 

  31. [31]

    R. Schwab and V. Ruff, On the nature of the yield point phenomenon, Acta. Mater., 61(2013), No. 5, p. 1798.

    CAS  Article  Google Scholar 

  32. [32]

    J.H. Han, S.J. Lee, J.G. Jung, and Y.K. Lee, The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel, Acta Mater., 78(2014), p. 369.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities, China (Nos. FRF-TP-18-039A1 and FRF-IDRY-19-013) and the China Postdoctoral Science Foundation (No. 2019M650482).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yong-jin Wang or Ren-bo Song.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Yj., Zhao, S., Song, Rb. et al. Hot ductility behavior of a Fe-0.3C-9Mn-2Al medium Mn steel. Int J Miner Metall Mater (2021). https://doi.org/10.1007/s12613-020-2206-x

Download citation

Keywords

  • medium Mn steel
  • hot ductility
  • reduction of area
  • fracture behavior
  • microstructure characterization