Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel


We investigated the effect of nanosized NbC precipitates on hydrogen-induced cracking (HIC) of high-strength low-alloy steel by conducting slow-strain-rate tensile tests (SSRT) and performing continuous hydrogen charging and fracture analysis. The results reveal that the HIC resistance of Nb-bearing steel is obviously superior to that of Nb-free steel, with the fractured Nb-bearing steel in the SSRT exhibiting a smaller ratio of elongation reduction (Iδ). However, as the hydrogen traps induced by NbC precipitates approach hydrogen saturation, the effect of the precipitates on the HIC resistance attenuate. We speculate that the highly dispersed nanosized NbC precipitates act as irreversible hydrogen traps that hinder the accumulation of hydrogen at potential crack nucleation sites. In addition, much like Nb-free steel, the Nb-bearing steel exhibits both H-solution strengthening and the resistance to HIC.

This is a preview of subscription content, access via your institution.


  1. [1]

    D. Hardie, E.A. Charles, and A.H. Lopez, Hydrogen embrittlement of high strength pipeline steels, Corros. Sci., 48(2006), No. 12, p. 4378.

    CAS  Article  Google Scholar 

  2. [2]

    A.J. Haq, K. Muzaka, D.P. Dunne, A. Calka, and E.V. Pereloma, Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels, Int. J. Hydrogen Energy, 38(2013), No. 5, p. 2544.

    CAS  Article  Google Scholar 

  3. [3]

    G. Lovicu, M. Bottazzi, F. D’Aiuto, M. De Sanctis, A. Dimatteo, C. Santus, and R. Valentini, Hydrogen embrittlement of automotive advanced high-strength steels, Metall. Mater. Trans. A, 43(2012), No. 11, p. 4075.

    CAS  Article  Google Scholar 

  4. [4]

    S.Q. Zhang, Y.H. Huang, B.T. Sun, Q.L. Liao, H.Z. Lu, B. Jian, H. Mohrbacher, W. Zhang, A.M. Guo, and Y. Zhang, Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels, Mater. Sci. Eng. A, 626(2015), p. 136.

    CAS  Article  Google Scholar 

  5. [5]

    Y. Komatsuzaki, H. Joo, and K. Yamada, Influence of yield strength levels on crack growth mode in delayed fracture of structural steels, Eng. Fract. Mech., 75(2008), No. 3–4, p. 551.

    Article  Google Scholar 

  6. [6]

    S.Q. Zheng, Y.M. Qi, C.F. Chen, and S.Y. Li, Effect of hydrogen and inclusions on the tensile properties and fracture behavior of A350LF2 steels after exposure to wet H2S environments, Corros. Sci., 60(2012), p. 59.

    CAS  Article  Google Scholar 

  7. [7]

    W. Wu, Z.Y. Liu, S.S. Hu, X.G. Li, and C.W. Du, Effect of pH and hydrogen on the stress corrosion cracking behavior of duplex stainless steel in marine atmosphere environment, Ocean Eng., 146(2017), p. 311.

    Article  Google Scholar 

  8. [8]

    D. Hejazi, A.J. Haq, N. Yazdipour, D.P. Dunne, A. Calka, F. Barbaro, and E.V. Pereloma, Effect of manganese content and microstructure on the susceptibility of X70 pipeline steel to hydrogen cracking, Mater. Sci. Eng. A, 551(2012), p. 40.

    CAS  Article  Google Scholar 

  9. [9]

    L. Lin, B.S. Li, G.M. Zhu, Y.L. Kang, and R.D. Liu, Effect of niobium precipitation behavior on microstructure and hydrogen induced cracking of press hardening steel 22MnB5, Mater. Sci. Eng. A, 721(2018), p. 38.

    CAS  Article  Google Scholar 

  10. [10]

    S.Q. Zhang, Q.Y. Zhao, J. Liu, F. Huang, Y.H. Huang, and X.G. Li, Understanding the effect of niobium on hydrogen-induced blistering in pipeline steel: A combined experimental and theoretical study, Corros. Sci., 159(2019), art. No. 108142.

  11. [11]

    S.Q. Zhang, E.D. Fan, J.F. Wan, J. Liu, Y.H. Huang, and X.G. Li, Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel, Corros. Sci., 139(2018), p. 83.

    CAS  Article  Google Scholar 

  12. [12]

    R.J. Shi, Z.D. Wang, L.J. Qiao, and X.L. Pang, Effect of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel, Int. J. Miner. Metall. Mater., (2020). DOI: https://doi.org/10.1007/s12613-020-2157-2

  13. [13]

    A. Nagao, M.L. Martin, M. Dadfarnia, P. Sofronis, and I.M. Robertson, The effect of nanosized (Ti, Mo)C precipitates on hydrogen embrittlement of tempered lath martensitic steel, Acta Mater., 74(2014), p. 244.

    CAS  Article  Google Scholar 

  14. [14]

    L.F. Li, B. Song, Z.Y. Cai, Z. Liu, and X.K. Cui, Effect of vanadium content on hydrogen diffusion behaviors and hydrogen induced ductility loss of X80 pipeline steel, Mater. Sci. Eng. A, 742(2019), p. 712.

    CAS  Article  Google Scholar 

  15. [15]

    L. Cho, E.J. Seo, D.H. Sulistiyo, K.R. Jo, S.W. Kim, J.K. Oh, Y.R. Cho, and B.C. De Cooman, Influence of vanadium on the hydrogen embrittlement of aluminized ultra-high strength press hardening steel, Mater. Sci. Eng. A, 735(2018), p. 448.

    CAS  Article  Google Scholar 

  16. [16]

    Q.Q. Qiao, L. Lu, E.D. Fan, J.B. Zhao, Y.L. Liu, G.C. Peng, Y.H. Huang, and X.G. Li, Effects of Nb on stress corrosion cracking of high-strength low-alloy steel in simulated seawater, Int. J. Hydrogen Energy, 44(2019), No. 51, p. 27962.

    CAS  Article  Google Scholar 

  17. [17]

    S.Q. Zhang, J.F. Wan, Q.Y. Zhao, J. Liu, F. Huang, Y.H. Huang, and X.G. Li, Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel, Corros. Sci., 164(2020), art. No. 108345.

  18. [18]

    Z.J. Xie, X.P. Ma, C.J. Shang, X.M. Wang, and S.V. Subramanian, Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel, Mater. Sci. Eng. A, 641(2015), p. 37.

    CAS  Article  Google Scholar 

  19. [19]

    Z.H. Wang, J.S. Wu, J. Li, X.G. Wu, Y.H. Huang, and X.G. Li, Effects of niobium on the mechanical properties and corrosion behavior of simulated weld HAZ of HSLA steel, Metall. Mater. Trans. A, 49(2018), p. 187.

    CAS  Article  Google Scholar 

  20. [20]

    X.W. Chen, G.Y. Qiao, X.L. Han, X. Wang, F.R. Xiao, and B. Liao, Effects of Mo, Cr and Nb on microstructure and mechanical properties of heat affected zone for Nb-bearing X80 pipeline steels, Mater. Des., 53(2014), p. 888.

    CAS  Article  Google Scholar 

  21. [21]

    S.L. Jeng, H.T. Lee, H.Y. Huang, and R.C. Kuo, Effects of Nb on the microstructure and elevated-temperature mechanical properties of alloy 690-SUS 304L dissimilar welds, Mater. Trans., 49(2008), No. 6, p. 1270.

    CAS  Article  Google Scholar 

  22. [22]

    J. Takahashi, K. Kawakami, and Y. Kobayashi, Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel, Acta Mater., 153(2018), p. 193.

    CAS  Article  Google Scholar 

  23. [23]

    A. Turk, D. San Martín, P.E.J. Rivera-Díaz-del-Castillo, and E.I. Galindo-Nava, Correlation between vanadium carbide size and hydrogen trapping in ferritic steel, Scripta Mater., 152(2018), p. 112.

    CAS  Article  Google Scholar 

  24. [24]

    Z.X. Peng, J. Liu, F. Huang, Q. Hu, Z.Y. Cheng, S. Liu, and Y.F. Cheng, Effect of submicron-scale MnS inclusions on hydrogen trapping and HIC susceptibility of X70 pipeline steels, Steel Res. Int., 89(2018), No. 7, art. No. 1700566.

  25. [25]

    J. Ma, F. Feng, B.Q. Yu, H.F. Chen, and L.F. Fan, Effect of cooling temperature on the microstructure and corrosion behavior of X80 pipeline steel, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 347.

    CAS  Article  Google Scholar 

  26. [26]

    P. Zhao, C. Cheng, G. Gao, W. Hui, R.D.K. Misra, B. Bai, and Y. Weng, The potential significance of microalloying with niobium in governing very high cycle fatigue behavior of bainite/martensite multiphase steels, Mater. Sci. Eng. A, 650(2016), p. 438.

    CAS  Article  Google Scholar 

  27. [27]

    A.G. Kalashami, A. Kermanpur, E. Ghassemali, A. Najafizadeh, and Y. Mazaheri, Correlation of microstructure and strain hardening behavior in the ultrafine-grained Nb-bearing dual phase steels, Mater. Sci. Eng. A, 678(2016), p. 215.

    Article  Google Scholar 

  28. [28]

    T. Zhang, J. Long, X.L. Sun, Y. Su, and Z.X. Li, Relationship between threshold stress of hydrogen induced cracking and hydrogen permeation for X80 pipeline steel, Mater. Mech. Eng., 27(2003), p. 14.

    CAS  Google Scholar 

  29. [29]

    P.P. Bai, J. Zhou, B.W. Luo, S.Q. Zheng, P.Y. Wang, and Y. Tian, Hydrogen embrittlement of X80 pipeline steel in H2S environment: Effect of hydrogen charging time, hydrogen-trapped state and hydrogen charging releasing-recharging cycles, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 63.

    CAS  Article  Google Scholar 

  30. [30]

    M.A.V. Devanathan and Z. Stachurski, The mechanism of hydrogen evolution on iron in acid solutions by determination of permeation rates, J. Electrochem. Soc., 111(1964), No. 5, p. 619.

    CAS  Article  Google Scholar 

  31. [31]

    R. Wang, Effects of hydrogen on fracture of pre-cracking samples of X70 pipeline steel, J. Chin. Soc. Corros. Prot., 28(2008), No. 2, p. 81.

    Google Scholar 

  32. [32]

    G.P. Tiwari, A. Bose, J.K. Chakravartty, S.L. Wadekar, M.K. Totlani, R.N. Arya, and R.K. Fotedar, A study of internal hydrogen embrittlement of steels, Mater. Sci. Eng. A, 286(2000), No. 2, p. 269.

    Article  Google Scholar 

  33. [33]

    G. M. Pressouyre, A classification of hydrogen traps in steel, Metall. Trans. A, 10(1979), No. 10, p. 1571.

    Article  Google Scholar 

  34. [34]

    P. CastañoRivera, V.P. Ramunni, and P. Bruzzoni, Hydrogen trapping in an API 5L X60, Corros. Sci., 54(2012), p. 106.

    Article  Google Scholar 

  35. [35]

    J. Li, J.S. Wu, Z.H. Wang, S.Q. Zhang, X.G. Wu, Y.H. Huang, and X.G. Li, The effect of nanosized NbC precipitates on electrochemical corrosion behavior of high-strength low-alloy steel in 3.5%NaCl solution, Int. J. Hydrogen Energy, 42(2017), No. 34, p. 22175.

    CAS  Article  Google Scholar 

  36. [36]

    Q.Q. Cui, J.S. Wu, D.H. Xie, X.G. Wu, Y.H. Huang, and X.G. Li, Effect of nanosized NbC precipitates on hydrogen diffusion in X80 pipeline steel, Materials (Basel), 10(2017), No. 7, p. 721.

    Article  Google Scholar 

  37. [37]

    F.G. Wei, T. Hara, and K. Tsuzaki, Nano-precipitates design with hydrogen trapping character in high strengthsteels, [in] Y. Weng, H. Dong, and Y. Gan, eds., Advanced Steels, Springer, Berlin, Heidelberg, 2011, p. 87.

    Google Scholar 

Download references


This work was financially supported by the National Key Research and Development Program of China (No. 2016YFB0300604), the National Natural Science Foundation of China (Nos. 51971033 and 51801011), the National Basic Research Program of China (No. 2014CB643300), and the National Materials Corrosion and Protection Data Center.

Author information



Corresponding author

Correspondence to Yun-hua Huang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, Ed., Zhang, Sq., Xie, Dh. et al. Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel. Int J Miner Metall Mater 28, 249–256 (2021). https://doi.org/10.1007/s12613-020-2167-0

Download citation


  • nanosized NbC precipitates
  • high-strength low-alloy steel
  • hydrogen-induced cracking
  • slow-strain-rate tensile, hydrogen charging