Sintering of monoclinic SrAl2Si2O8 ceramics and their Sr immobilization

Abstract

Monoclinic SrAl2Si2O8 ceramics for Sr immobilization were prepared by a liquid-phase sintering method. The sintering temperature, mineral phase composition, microstructure, flexural strength, bulk density, and Sr ion leaching characteristics of the SrAl2Si2O8 ceramics were investigated. A crystalline monoclinic SrAl2Si2O8 phase formed through liquid-phase sintering at 1223 K. The introduction of four flux agents (B2O3, CaO·2B2O3, SrO·2B2O3, and BaO·2B2O3) to the SrAl2Si2O8 ceramics not only reduced the densification temperature and decreased the volatilization of Sr during high-temperature sintering but also impacted the mechanical properties of the ceramics. Product consistency tests showed that the leaching concentration of Sr ions in the sample with flux agent B2O3 was the lowest, whereas that of Sr ions in the sample with flux agent BaO2B2O3 was the highest. These results show that the leaching concentration of Sr ions depends largely on the amorphous phase in the ceramics. Meanwhile, the formation of mineral analog ceramics containing Sr is an important factor to improve Sr immobilization.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    T. Hijikata, M. Sakata, H. Miyashiro, K. Kinoshita, T. Higashi, and T. Tamai, Development of pyrometallurgical partitioning of actinides from high-level radioactive waste using a reductive extraction step, Nucl. Technol., 115(1996), No. 1, p. 114.

    CAS  Article  Google Scholar 

  2. [2]

    G.R. Choppin, Actinide speciation in the environment, J. Radioanal. Nucl. Chem., 273(2007), No. 3, p. 695.

    CAS  Article  Google Scholar 

  3. [3]

    M.Y. Alyapyshev, V.A. Babain, and Y.A. Ustynyuk, Recovery of minor actinides from high-level wastes: Modern trends, Russ. Chem. Rev., 85(2016), No. 9, p. 943.

    CAS  Article  Google Scholar 

  4. [4]

    C.M. Jantzen, W.E. Lee, and M.I. Ojovan, Radioactive waste conditioning, immobilization, and encapsulation processes and technologies: Overview and advances, [in] W.E. Lee, M.I. Ojovan, and C.M. Jantzen, eds., Radioactive Waste Management and Contaminated Site Clean-up: Procesees, Technologies and International Experience, Woodhead Publishing, Cambridge, 2013, p. 171.

    Google Scholar 

  5. [5]

    R.S. Forsyth and L.O. Werme, Spent fuel corrosion and dissolution, J. Nucl. Mater., 190(1992), p. 3.

    CAS  Article  Google Scholar 

  6. [6]

    I.W. Donald, B.L. Metcalfe, and R.N.J. Taylor, The immobilization of high level radioactive wastes using ceramics and glasses, J. Mater. Sci., 32(1997), No. 22, p. 5851.

    CAS  Article  Google Scholar 

  7. [7]

    L. Wang and T.X. Liang, Ceramics for high level radioactive waste solidification, J. Adv. Ceram., 1(2012), No. 3, p. 194.

    CAS  Article  Google Scholar 

  8. [8]

    W.E. Lee, M.I. Ojovan, M.C. Stennett, and N.C. Hyatt, Immobilization of radioactive waste in glasses, glass composite materials and ceramics, Adv. Appl. Ceram., 105(2006), No. 1, p. 3.

    CAS  Article  Google Scholar 

  9. [9]

    E.R. Vance, B.D. Begg, and D.J. Gregg, Immobilization of high-level radioactive waste and used nuclear fuel for safe disposal in geological repository systems, [in] M.J. Apted and J. Ahn, eds., Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, 2nd ed., Woodhead Publishing, Cambridge, 2017, p. 269.

    Google Scholar 

  10. [10]

    C. Ferone, B. Liguori, A. Marocco, S. Anaclerio, M. Pansini, and C. Colella, Monoclinic (Ba, Sr)-celsian by thermal treatment of (Ba, Sr)-exchanged zeolite A, Microporous Mesoporous Mater., 134(2010), No. 1–3, p. 65.

    CAS  Article  Google Scholar 

  11. [11]

    C.M. López-Badillo, J. López-Cuevas, C.A. Gutiérrez-Chavarría, J.L. Rodríguez-Galicia, and M.I. Pech-Canul, Synthesis and characterization of BaAl2Si2O8 using mechanically activated precursor mixtures containing coal fly ash, J. Eur. Ceram. Soc., 33(2013), No. 15–16, p. 3287.

    Article  Google Scholar 

  12. [12]

    Y. Kobayashi and M. Inagaki, Preparation of reactive Sr-celsian powders by solid-state reaction and their sintering, J. Eur. Ceram. Soc., 24(2004), No. 2, p. 399.

    CAS  Article  Google Scholar 

  13. [13]

    B. Liguori, C. Ferone, S. Anaclerio, and C. Colella, Monoclinic Sr-celsian by thermal treatment of Sr-exchanged zeolite A, LTA-type framework, Solid State Ionics, 179(2008), No. 40, p. 2358.

    CAS  Article  Google Scholar 

  14. [14]

    S. Chen and D.G. Zhu, Low-temperature sintering behaviour and properties of monoclinic-SrAl2Si2O8 ceramics prepared via an aqueous suspension milling process, J. Mater. Sci.: Mater. Electron., 27(2016), No. 11, p. 11127.

    CAS  Google Scholar 

  15. [15]

    Z.H. Xu, Z. Jiang, D.D. Wu, X. Peng, Y.H. Xu, N. Li, Y.J. Qi, and P. Li, Immobilization of strontium-loaded zeolite A by metakaolin based-geopolymer, Ceram. Int., 43(2017), No. 5, p. 4434.

    CAS  Article  Google Scholar 

  16. [16]

    ASTM International, ASTM Standard C1285-14: Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT), ASTM International, West Conshohocken, 2014.

    Google Scholar 

  17. [17]

    E.M. Levin, H.F. McMurdie, and F.P. Hall, Phase Diagrams for Ceramists, The American Ceramic Society, Columbus, 1956.

    Google Scholar 

  18. [18]

    E.M. Levin and H.F. McMurdie, The system BaO-B2O3, J. Am. Ceram Soc., 32(1949), No. 3, p. 99.

    CAS  Article  Google Scholar 

  19. [19]

    H. Witzmann and G. Herzog, Luminescence-optical behaviour of alkaline earth borate luminophors, Z. Phys. Chem., 225(1964), p. 197.

    CAS  Google Scholar 

  20. [20]

    R.M. German, S. Farooq, and C.M. Kipphut, Kinetics of liquid sintering, Mater. Sci. Eng. A, 105–106(1988), p. 215.

    Article  Google Scholar 

  21. [21]

    S. Chen, D.G. Zhu, and X.S. Cai, Low-temperature densification sintering and properties of monoclinic-SrAl2Si2O8 ceramics, Metall. Mater. Trans. A, 45(2014), No. 9, p. 3995.

    CAS  Article  Google Scholar 

  22. [22]

    S. Rajesh, H. Jantunen, M. Letz, and S. Pichler-Willhelm, Low temperature sintering and dielectric properties of alumina-filled glass composites for LTCC applications, Int. J. Appl. Ceram. Technol., 9(2012), No. 1, p. 52.

    CAS  Article  Google Scholar 

  23. [23]

    S.D. Ross and M. Finkelstein, Barium Borate Preparation, United States Patent, Appl. 4897249, 1990.

  24. [24]

    S. Chen, D.G. Zhu, P.Q. Sun, and H.L. Sun, Sintering behavior and dielectric properties of SrB2Si2O8 ceramics, J. Mater. Sci.: Mater. Electron., 24(2013), No. 11, p. 4593.

    CAS  Google Scholar 

  25. [25]

    H. Scholze, Glass: Nature, Structure, and Properties, Springer, New York, 1991.

    Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 11605116).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ding Ren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Li, X., Zhang, Fj. et al. Sintering of monoclinic SrAl2Si2O8 ceramics and their Sr immobilization. Int J Miner Metall Mater (2021). https://doi.org/10.1007/s12613-020-2056-6

Download citation

Keywords

  • low-temperature liquid-phase sintering
  • strontium immobilization
  • monoclinic strontium feldspar
  • flux agent