Carbothermal reduction characteristics of oxidized Mn ore through conventional heating and microwave heating


For the purpose of exploring a potential process to produce FeMn, the effects of microwave heating on the carbothermal reduction characteristics of oxidized Mn ore was investigated. The microwave heating curve of the mixture of oxidized Mn ore and coke was analyzed in association with the characterization of dielectric properties. The comparative experiments were conducted on the carbothermal reductions through conventional and microwave heatings at temperatures ranging from 973 to 1373 K. The thermogravimetric analysis showed that carbothermal reactions under microwave heating proceeded to a greater extent and at a faster pace compared with those under conventional heating. The metal phases were observed in the microstructures only under microwave heating. The carbothermal reduction process under microwave heating was discussed. The electric and magnetic susceptibility differences were introduced into the thermodynamics analysis for the formation of metal Mn. The developed thermodynamics considered that microwave heating could make the reduction of MnO to Mn more accessible and increase the reduction extent.

This is a preview of subscription content, access via your institution.


  1. [1]

    X.Y. Zhang, X.D. Tian, S.G. Liu, and P.P. Zhang, Utilization technique of ferromanganese ore, Chin. J. Nonferrous Met., 15(2005), No. 4, p. 650.

    CAS  Google Scholar 

  2. [2]

    A. Ahmed, H. Halfa, M.K. El-Fawakhry, H. El-Faramawy, and M. Eissa, Parameters affecting energy consumption for producing high carbon ferromanganese in a closed submerged arc furnace, J. Iron Steel Res. Int., 21(2014), No. 7, p. 666.

    CAS  Article  Google Scholar 

  3. [3]

    R.H. Eric and E. Burucu, The mechanism and kenetics of the carbothermic reduction of mamatwan manganese ore fines, Miner. Eng., 5(1992), No. 7, p. 795.

    CAS  Article  Google Scholar 

  4. [4]

    W.J. Rankin and J.R. Wynnyckyj, Kinetics of reduction of MnO in powder mixtures with carbon, Metall. Mater. Trans. B, 28(1997), No. 2, p. 307.

    Article  Google Scholar 

  5. [5]

    M. Yastreboff, O. Ostrovski, and S. Ganguly, Effect of gas composition on the carbothermic reduction of manganese oxide, ISIJ Int., 43(2003), No. 2, p. 161.

    CAS  Article  Google Scholar 

  6. [6]

    X. Gu, J. Yue, L.J. Li, H.T. Xue, J. Yang, and X.B. Zhao, General synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) hierarchical microspheres as lithium-ion battery anodes, Electrochim. Acta, 184(2015), p. 250.

    CAS  Article  Google Scholar 

  7. [7]

    K.Q. Li, G. Chen, J. Chen, J.H. Peng, R. Ruan, and C. Srinivasakannan, Microwave pyrolysis of walnut shell for reduction process of low-grade pyrolusite, Bioresour. Technol, 291(2019), art. No. 121838.

  8. [8]

    K.Q. Li, G. Chen, X.T. Li, J.H. Peng, R. Ruan, M. Omran, and J. Chen, High-temperature dielectric properties and pyrolysis reduction characteristics of different biomass-pyrolusite mixtures in microwave field, Bioresour. Technol, 294(2019), art. No. 122217.

  9. [9]

    R. Kononov, O. Ostrovski, and S. Ganguly, Carbothermal reduction of manganese oxide in different gas atmospheres, Metall. Mater. Trans. B, 39(2008), No. 5, p. 662.

    Article  Google Scholar 

  10. [10]

    K.S. Abdel Halim, M. Bahgat, M.B. Morsi, and K. El-Barawy, Pre-reduction of manganese ores for ferromanganese industry, Ironmaking Steelmaking, 38(2011), No. 4, p. 279.

    CAS  Article  Google Scholar 

  11. [11]

    R. Elliott, K. Coley, S. Mostaghel, and M. Barati, Review of manganese processing for production of TRIP/TWIP steels, Part 1: Current practice and processing fundamentals, JOM, 70(2018), No. 5, p. 680.

    CAS  Article  Google Scholar 

  12. [12]

    M. Oghbaei and O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications, J. Alloys Compd., 494(2010), No. 1–2, p. 175.

    CAS  Article  Google Scholar 

  13. [13]

    S.W. Kingman and N.A. Rowson, Microwave treatment of minerals—A review, Miner. Eng., 11(1998), No. 11, p. 1081.

    CAS  Article  Google Scholar 

  14. [14]

    Z.Y. Ma, Y. Liu, J.K. Zhou, M.D. Liu, and Z.Z. Liu, Recovery of vanadium and molybdenum from spent petrochemical catalyst by microwave-assisted leaching, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 33.

    CAS  Article  Google Scholar 

  15. [15]

    D.M.P. Mingos and D.R. Baghurst, Tilden Lecture: Applications of microwave dielectric heating effects to synthetic problems in chemistry, Chem. Soc. Rev., 20(1991), No. 1, p. 1.

    CAS  Article  Google Scholar 

  16. [16]

    Z.Q. Zhu and J. Zhou, Rapid growth of ZnO hexagonal tubes by direct microwave heating, Int. J. Miner. Metall. Mater., 17(2010), No. 1, p. 80.

    CAS  Article  Google Scholar 

  17. [17]

    J.P. Wang, T. Jiang, Y.J. Liu, and X.X. Xue, Influence of microwave treatment on grinding and dissociation characteristics of vanadium titano-magnetite, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 160.

    CAS  Article  Google Scholar 

  18. [18]

    K.Q. Li, J. Chen, G. Chen, J.H. Peng, R. Ruan, and C. Srinivasakannan, Microwave dielectric properties and thermochemical characteristics of the mixtures of walnut shell and manganese ore, Bioresour. Technol, 286(2019), art. No. 121381.

  19. [19]

    K. Onol and M.N. Saridede, Investigation on microwave heating for direct leaching of chalcopyrite ores and concentrates, Int. J. Miner. Metall. Mater., 20(2013), No. 3, p. 228.

    CAS  Article  Google Scholar 

  20. [20]

    A.S. Awad, D. Merheb, M. Zakhour, M. Nakhl, and J.L. Bobet, Rapid and direct reactive synthesis of Ti-Al intermetallics by microwave heating of TiH2 and Al powder without microwave susceptor, J. Alloys Compd., 720(2017), p. 182.

    CAS  Article  Google Scholar 

  21. [21]

    Z.W. Peng and J.Y. Hwang, Microwave-assisted metallurgy, Int. Mater. Rev., 60(2015), No. 1, p. 30.

    CAS  Article  Google Scholar 

  22. [22]

    C.A. Pickles, Microwaves in extractive metallurgy: Part 2—A review of applications, Miner. Eng., 22(2009), No. 13, p. 1112.

    CAS  Article  Google Scholar 

  23. [23]

    N. Standish and H. Worner, Microwave application in the reduction of metal oxides with carbon, J. Microwave Power Electromagn. Energy, 25(1990), No. 3, p. 177.

    Article  Google Scholar 

  24. [24]

    N. Standish and W. Huang, Microwave application in carbothermic reduction of iron ores, ISIJ Int., 31(1991), No. 3, p. 241.

    CAS  Article  Google Scholar 

  25. [25]

    K.Q. Li, J. Chen, J.H. Peng, R. Ruan, C. Srinivasakannan, and G. Chen, Pilot-scale study on enhanced carbothermal reduction of low-grade pyrolusite using microwave heating, Powder Technol., 360(2020), p. 846.

    CAS  Article  Google Scholar 

  26. [26]

    X.J. Su, Q.H. Mo, C.L. He, S.J. Ma, and S.J. Que, Microwave absorption characteristics of manganese compounds, Min. Metall. Eng., 35(2015), No. 5, p. 90.

    Google Scholar 

  27. [27]

    J. Chen, L. Li, G. Chen, J.H. Peng, and C. Srinivasakannan, Rapid thermal decomposition of manganese ore using microwave heating, J. Alloys Compd., 699(2017), p. 430.

    CAS  Article  Google Scholar 

  28. [28]

    J. Liu, J.H. Liu, G.H. Yuan, L.Z. Peng, K.W. Liu, and Y.Y. Zhang, Microwave heating characteristics of raw materials for ferromanganese production, Min. Metall. Eng., 35(2015), No. 3, p. 91.

    Google Scholar 

  29. [29]

    J. Jacob, L.H.L. Chia, and F.Y.C. Boey, Thermal and nonthermal interaction of microwave radiation with materials, J. Mater. Sci., 30(1995), No. 21, p. 5321.

    CAS  Article  Google Scholar 

  30. [30]

    A. de la Hoz, A. Diaz-Ortiz, and A. Moreno, Microwaves in organic synthesis. Thermal and non-thermal microwave effects, Chem. Soc. Rev., 34(2005), No. 21, p. 164.

    CAS  Article  Google Scholar 

  31. [31]

    L. Perreux and A. Loupy, A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations, Tetrahedron, 57(2001), No. 45, p. 9199.

    CAS  Article  Google Scholar 

  32. [32]

    J. Fukushima, K. Kashimura, S. Takayama, M. Sato, S. Sano, Y. Hayashi, and H. Takizawa, In-sttu kinetic study on nonthermal reduction reaction of CuO during microwave heating, Mater. Let., 91(2013), p. 252.

    CAS  Article  Google Scholar 

  33. [33]

    Y.L. Jiang, B.G. Liu, P. Liu, J.H. Peng, and L.B. Zhang, Dielectric properties and oxidation roasting of molybdenite concentrate by using microwave energy at 2.45 GHz frequency, Metall. Mater. Trans. B, 48(2017), No. 6, p. 3047.

    CAS  Article  Google Scholar 

  34. [34]

    Y. Zimmels, Thermodynamics in the presence of electromagnetic fields, Phys. Rev. E, 52(1995), No. 2, p. 1452.

    CAS  Article  Google Scholar 

  35. [35]

    J.R. Rumble, CRC Handbook of Chemistry and Physics, 100th ed., CRC Press, Boca Raton, Florida, 2019.

    Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (No. 51704083).

Author information



Corresponding author

Correspondence to Jian-hua Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Y., Liu, J., Liu, Jh. et al. Carbothermal reduction characteristics of oxidized Mn ore through conventional heating and microwave heating. Int J Miner Metall Mater 28, 221–230 (2021).

Download citation


  • carbothermal reduction
  • manganese ore
  • manganese oxides
  • microwave heating
  • thermodynamics
  • electromagnetic fields