Improvement in hot corrosion resistance of dissimilar alloy 825 and AISI 321 CO2-laser weldment by HVOF coating in aggressive salt environment at 900°C

Abstract

This study investigated the hot corrosion performance of a dissimilar weldment of Ni-based superalloy and stainless steel joined by CO2-laser welding and improved by high-velocity oxy-fuel (HVOF) coating in a Na2SO4-60wt%V2O5 environment at 900°C. A dissimilar butt joint of AISI 321 and alloy 825 was fabricated by CO2-laser welding with low heat input after obtaining the optimum welding parameters by bead-on-plate trials. The metallurgical and mechanical properties of the laser weldment were evaluated. The tensile test results indicated the occurrence of fracture in the base metal AISI 321 side. The HVOF process was employed to coat Ni-20wt%Cr on the weldment. To evaluate the surface morphology of the corrosion products formed on the uncoated and Ni-20wt%Cr-coated weldments, scanning electron microscopy (SEM) analysis was performed. Energy-dispersive spectroscopy (EDS) was used to determine the different elements present on the surface scales. The existence of oxide phases on the weldments was determined by X-ray diffraction (XRD). The cross sections of the weldments were characterized by SEM with EDS line mapping analysis. The results indicated that the Ni-20wt%Cr-coated weldment exhibited superior hot corrosion resistance due to the development of Cr2O3 and NiCr2O4 protective oxide scales.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    I.A. Choudhury and M.A. El-Baradie, Machinability of nickel-base super alloys: A general review, J. Mater. Process. Technol., 77(1998), No. 1–3, p. 278.

    Article  Google Scholar 

  2. [2]

    E.O. Ezugwu, J. Bonney, and Y. Yamane, An overview of the machinability of aeroengine alloys, J. Mater. Process. Technol., 134(2003), No. 2, p. 233.

    CAS  Article  Google Scholar 

  3. [3]

    A. Thakur, A. Mohanty, and S. Gangopadhyay, Comparative study of surface integrity aspects of Incoloy 825 during machining with uncoated and CVD multilayer coated inserts, Appl. Surf. Sci., 320(2014), p. 829.

    CAS  Article  Google Scholar 

  4. [4]

    H. Aytekin and Y. Akçin, Characterization of borided Incoloy 825 alloy, Mater. Des., 50(2013), p. 515.

    CAS  Article  Google Scholar 

  5. [5]

    N. Hussain, G. Schanz, S. Leistikow, and K.A. Shahid, High-temperature oxidation and spalling behavior of incoloy 825, Ox-id. Met., 32(1989), No. 5, p. 405.

    CAS  Article  Google Scholar 

  6. [6]

    K.S. Guan, X.D. Xu, H. Xu, and Z.W. Wang, Effect of aging at 700°C on precipitation and toughness of AISI 321 and AISI 347 austenitic stainless steel welds, Nucl. Eng. Des., 235(2005), No. 23, p. 2485.

    CAS  Article  Google Scholar 

  7. [7]

    K.S. Min and S.W. Nam, Correlation between characteristics of grain boundary carbides and creep-fatigue properties in AISI 321 stainless steel, J. Nucl. Mater., 322(2003), No. 2–3, p. 91.

    CAS  Article  Google Scholar 

  8. [8]

    M. Schwind, J. Kallqvist, J.-O. Nilsson, J. Agren, and H.-O. Andrén, σ-phase precipitation in stabilized austenitic stainless steels, Acta Mater., 48(2000), No. 10, p. 2473.

    CAS  Article  Google Scholar 

  9. [9]

    M. Arivarasu, P. Roshith, R. Padmanaban, S. Thirumalini, K.V. Phani Prabhakar, and G. Padmanabham, Investigations on metallurgical and mechanical properties of CO2 laser beam welded Alloy 825, Can. Metall. Q., 56(2017), No. 2, p. 232.

    CAS  Article  Google Scholar 

  10. [10]

    S. Mohanty, M. Arivarasu, N. Arivazhagan, and K.V. Pani Prabhakar, The residual stress distribution of CO2 laser beam welded AISI 316 austenitic stainless steel and the effect of vibratory stress relief, Mater. Sci. Eng. A, 703(2017), p. 227.

    CAS  Article  Google Scholar 

  11. [11]

    S. Kamal, R. Jayaganthan, S. Prakash, and S. Kumar, Hot corrosion behavior of detonation gun sprayed Cr3C2-NiCr coatings on Ni and Fe-based superalloys in Na2SO4-60%V2O5 environment at 900°C, J. Alloys Compd., 463(2008), No. 1–2, p. 358.

    CAS  Article  Google Scholar 

  12. [12]

    N. Eliaz, G. Shemesh, and R.M. Latanision, Hot corrosion in gas turbine components, Eng. Fail. Anal., 9(2002), No. 1, p. 31.

    CAS  Article  Google Scholar 

  13. [13]

    T.S. Sidhu, S. Prakash, and R.D. Agrawal, Studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications, Mater. Sci., 41(2005), No. 6, p. 805.

    CAS  Article  Google Scholar 

  14. [14]

    T.S. Sidhu, R.D. Agrawal, and S. Prakash, Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—A review, Surf. Coat. Technol., 198(2005), No. 1–3, p. 441.

    CAS  Article  Google Scholar 

  15. [15]

    T.S. Sidhu, S. Prakash, and R.D. Agrawal, Investigations on role of HVOF sprayed Co and Ni based coatings to combat hot corrosion, Corros. Eng. Sci. Technol., 43(2008), No. 4, p. 335.

    CAS  Article  Google Scholar 

  16. [16]

    S.M. Muthu, M. Arivarasu, N. Arivazhagan, and M.N. Rao, Investigation of hot corrosion resistance of bare and Ni-20%Cr coated superalloy 825 to Na2SO4-60%V2O5 environment at 900°C, ProcediaStruct. Integrity, 14(2019), p. 290.

    Google Scholar 

  17. [17]

    T.S. Sidhu, S. Prakash, and R.D. Agrawal, Hot corrosion studies of HVOF sprayed Cr3C2-NiCr and Ni-20Cr coatings on nickel-based superalloy at 900oC, Surf. Coat. Technol., 201(2006), No. 3–4, p. 792.

    CAS  Article  Google Scholar 

  18. [18]

    H. Singh, T.S. Sidhu, J. Karthikeyan, and S.B.S. Kalsi, Evaluation of characteristics and behavior of cold sprayed Ni-20Cr coating at elevated temperature in waste incinerator plant, Surf. Coat. Technol., 261(2015), p. 375.

    CAS  Article  Google Scholar 

  19. [19]

    S.M. Muthu and M. Arivarasu, Investigations of hot corrosion resistance of HVOF coated Fe-based superalloy A-286 in simulated gas turbine environment, Eng. Fail. Anal., 107(2020), art. No. 104224.

  20. [20]

    S.S. Chatha, H.S. Sidhu, and B.S. Sidhu, High temperature hot corrosion behaviour of NiCr and Cr3C2-NiCr coatings on T91 boiler steel in an aggressive environment at 750oC, Surf. Coat. Technol., 206(2012), No. 19–20, p. 3839.

    CAS  Article  Google Scholar 

  21. [21]

    S.M. Muthu and M. Arivarasu, Air oxidation and hot corrosion behavior of bare and CO2 laser-welded superalloy A-286 at 700°C, Trans. Indian Inst. Met., 72(2019), p. 1607.

    CAS  Article  Google Scholar 

  22. [22]

    W.X. Zhou, K.S. Zhou, C.M. Deng, K.L. Zeng, and Y.X. Li, Hot corrosion behavior of HVOF-sprayed Cr3C2-WC-NiCo-CrMo coating, Ceram. Int., 43(2017), No. 12, p. 9390.

    CAS  Article  Google Scholar 

  23. [23]

    M.Z. Li, Y.X. Cheng, L. Guo, C.L. Zhang, Y.C. Zhang, S.X. He, and F.X. Ye, Preparation of plasma sprayed nanostructured GdPO4 thermal barrier coating and its hot corrosion behavior in molten salts, Ceram. Int., 43(2017), No. 10, p. 7797.

    CAS  Article  Google Scholar 

  24. [24]

    V. Mannava, A.S. Rao, N. Paulose, M. Kamaraj, and R.S. Kottada, Hot corrosion studies on Ni-base superalloy at 650°C under marine-like environment conditions using three salt mixture (Na2SO4 + NaCl + NaVO3), Corros. Sci, 105(2016), p. 109.

    CAS  Article  Google Scholar 

  25. [25]

    S. Kamal, R. Jayaganthan, and S. Prakash, Evaluation of cyclic hot corrosion behaviour of detonation gun sprayed Cr3C2-25%NiCr coatings on nickel- and iron-based supeaalloys, Surf. Coat. Technol., 203(2009), No. 8, p. 1004.

    CAS  Article  Google Scholar 

  26. [26]

    T.S. Sidhu, S. Prakash, and R.D. Agrawal, A comparative study of hot corrosion resistance of HVOF sprayed NiCrBSi and Stellite-6 coated Ni-based superalloy at 900°C, Mater. Sci. Eng. A, 445–446(2007), p. 210.

    Article  Google Scholar 

  27. [27]

    M. Arivarasu, M. Venkatesh Kannan, K. Devendranath Ramkumar, and N. Arivazhagan, Hot-corrosion resistance of dissimilar AISI 4340 and AISI 304L weldments in the molten salt environment at 600°C, Corros. Eng. Sci. Technol., 52(2017), No. 2, p. 114.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. G. Padmanabham and Mr. Anbu Rasu for facilitating us while conducting the CO2-laser welding process. The authors thank Vellore Institute of Technology for providing ‘VIT SEED GRANT’ for carrying out this research work. The authors would also like to thank Lab in charges of Materials Engineering Technology Laboratory and Advance Materials processing laboratory, Vellore Institute of Technology-Vellore, India, for providing all the facilities to carry out the research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Arivarasu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muthu, S.M., Arivarasu, M., Hari Krishna, T. et al. Improvement in hot corrosion resistance of dissimilar alloy 825 and AISI 321 CO2-laser weldment by HVOF coating in aggressive salt environment at 900°C. Int J Miner Metall Mater (2020). https://doi.org/10.1007/s12613-020-2014-3

Download citation

Keywords

  • nickel-based superalloy
  • dissimilar welding
  • weldment corrosion
  • high-velocity oxy-fuel coating
  • corrosion kinetics