Hydroxylated graphene quantum dots as fluorescent probes for sensitive detection of metal ions


Highly sensitive methods are important for monitoring the concentration of metal ions in industrial wastewater. Here, we developed a new probe for the determination of metal ions by fluorescence quenching. The probe consists of hydroxylated graphene quantum dots (H-GQDs), prepared from GQDs by electrochemical method followed by surface hydroxylation. It is a non-reactive indicator with high sensitivity and detection limits of 0.01 μM for Cu2+, 0.005 μM for Al3+, 0.04 μM for Fe3+, and 0.02 μM for Cr3+. In addition, the low biotoxicity and excellent solubility of H-GQDs make them promising for application in wastewater metal ion detection.

This is a preview of subscription content, access via your institution.


  1. [1]

    B. Li, Z.S. He, H.X. Zhou, H. Zhang, W. Li, T.Y. Cheng, and G.H. Liu, Reaction based colorimetric and fuorescence probes for selective detection of hydrazine, Dyes Pigm., 146(2017), p. 300.

    CAS  Google Scholar 

  2. [2]

    J. Yao, M. Yang, and Y.X. Duan, Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: newinsights into biosensing, bioimaging, genomics, dagnostics, and therapy, Chem. Rev., 114(2014), No. 12, p. 6130.

    CAS  Google Scholar 

  3. [3]

    A.T. Aron, A.G. Reeves, and C.J. Chang, Activity-based sensing fluorescent probes for iron in biological systems, Curr. Opin. Chem. Biol, 43(2018), p. 113.

    CAS  Google Scholar 

  4. [4]

    D.J. Cho and J.L. Sessler, Modern reaction-based indicator systems, Chem. Soc. Rev., 38(2009), No. 6, p. 1647.

    CAS  Google Scholar 

  5. [5]

    P. Roy, P.C. Chen, A.P. Periasamy, Y.N. Chen, and H.T. Chang, Photoluminescent carbon nanodots: Synthesis, physicochemical properties and analytical applications, Mater. Today, 18(2014), No. 8, p. 447.

    Google Scholar 

  6. [6]

    J. Wen, Y.Q. Xu, H.J. Li, A.P. Lu, and S.G. Sun, Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging, Chem. Commun., 51(2015), No. 57, p. 11346.

    CAS  Google Scholar 

  7. [7]

    Y.B. Song, S.J. Zhu, and B. Yang, Bioimaging based on fluorescent carbon dots, RSC Adv., 4(2014), No. 52, p. 27184.

    CAS  Google Scholar 

  8. [8]

    L.P. Lin, X.H. Song, YY. Chen, M.C. Rong, Y.R. Wang, L. Zhao, T.T. Zhao, and X. Chen, Europium-decorated graphene quantum dots as a fluorescent probe for label-free, rapid and sensitive detection of Cu2+ and l-cysteine, Anal. Chim. Acta, 891(2015), p. 261.

    CAS  Google Scholar 

  9. [9]

    Y. Li, X.Q. Liu, Q.Y. Li, J. Ge, H. Liu, S. Li, L.F. Wang, J. Wang, and N. Ma, Post-oxidation treated graphene quantum dots as a fluorescent probe for sensitive detection of copper ions, Chem. Phys. Lett., 664(2016), p. 127.

    CAS  Google Scholar 

  10. [10]

    X.C. Fu, J.Z. Jin, J. Wu, J.C. Jin, and CG. Xie, A novel “turn-on” fluorescence sensor for high selectively detecting Al (III) in aqueous solution based on simple electrochemical synthesized carbon dots, Anal Methods, 9(2017), No. 26, p. 3941.

    CAS  Google Scholar 

  11. [11]

    KG. Qu, J.S. Wang, J.S. Ren, and XG. Qu, Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine, Chem. Eur. J., 19(2013), No. 22, p. 7243.

    CAS  Google Scholar 

  12. [12]

    B.J. Wang, S.J. Zhuo, L.Y. Chen, and Y.J. Zhang, Fluorescent graphene quantum dot nanoprobes for the sensitive and selective detection of mercury ions, Spectrochim. Acta Part A, 131(2014), p. 384.

    CAS  Google Scholar 

  13. [13]

    S. Sharma, A. Umar, S.K. Mehta, and S.K. Kansal, Fluorescent spongy carbon nanoglobules derived from pineapple juice: A potential sensing probe for specific and selective detection of chromium (VI) ions, Ceram. Int., 43(2017), No. 9, p. 7011.

    CAS  Google Scholar 

  14. [14]

    FX. Wang, ZY. Gu, W. Lei, W.J. Wang, X.F. Xia, and Q.L. Hao, Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions, Sens. Actuators B, 190(2014), p. 516.

    CAS  Google Scholar 

  15. [15]

    X.F. Niu, Y.B. Zhong, R. Chen, F. Wang, Y.J. Liu, and D. Luo, A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles, Sens. Actuators B, 255(2018), p. 1577.

    CAS  Google Scholar 

  16. [16]

    S.H. Zhou, H.B. Xu, W. Gan, and Q.H. Yuan, Graphene quantum dots: Recent progress in preparation and fluorescence sensing applications, RSC Adv., 6(2016), No. 112, p. 110775.

    CAS  Google Scholar 

  17. [17]

    S.J. Zhu, J.H. Zhang, C.Y. Qiao, S.J. Tang, Y.F. Li, W.J. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H.N. Gao, H.T. Wei, H. Zhang, H.C. Sun, and B. Yang, Strongly green-photolu-minescent graphene quantum dots for bioimaging applications, Chem. Commun., 47(2011), No. 24, p. 6858.

    CAS  Google Scholar 

  18. [18]

    Y.Q. Feng, J.P. Zhao, X.B. Yan, F.L. Tang, and Q.J. Xue, Enhancement in the fluorescence of graphene quantum dots by hydrazine hydrate reduction, Carbon, 66(2014), No. 1, p. 334.

    CAS  Google Scholar 

  19. [19]

    Z.S. Qian, XY. Shan, L.J. Chai, J.R. Chen, and H. Feng, A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion, Biosens. Bioelectron., 68(2015), p. 225.

    CAS  Google Scholar 

  20. [20]

    Y. Li, X.Q. Liu, J. Wang, H. Liu, S. Li, Y.B. Hou, W. Wan, W.D. Xue, N. Ma, and J.Z. Zhang, Chemical nature of redox-controlled photoluminescence of graphene quantum dots by post-synthesis treatment, J. Phys. Chem. C, 120(2016), No. 45, p. 26004.

    CAS  Google Scholar 

  21. [21]

    Y. Li, H. Liu, X.Q. Liu, S. Li, L.F. Wang, N. Ma, and D.L. Qiu, Free-radical-assisted rapid synthesis of graphene quantum dots and their oxidizability studies, Langmur, 32(2016), No. 34, p. 8641.

    CAS  Google Scholar 

  22. [22]

    P.H. Luo, Y. Qiu, X.F. Guan, and L.Q. Jiang, Regulation of photoluminescence properties of graphene quantum dots via hydrothermal treatment, Phys. Chem. Chem. Phys., 16(2014), No. 35, p. 19011.

    CAS  Google Scholar 

  23. [23]

    S.J. Zhu, J.H. Zhang, S.J. Tang, CY. Qiao, L. Wang, HY. Wang, X. Liu, B. Li, Y.F. Li, W.L. Yu, X.F. Wang, H.C. Sun, and B. Yang, Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications, Adv. Funct. Mater., 22(2012), No. 22, p. 4732.

    CAS  Google Scholar 

  24. [24]

    L.L. Li, G.H. Wu, G.H. Yang, J. Peng, J.W. Zhao, and J.J. Zhu, Focusing on luminescent graphene quantum dots: Current status and future perspectives, Nanoscale, 10(2013), No. 5, p. 4015.

    Google Scholar 

  25. [25]

    S.L. Hu, A. Trinchi, P. Atkin, and I. Cole, Tunable photolu-minescence across the entire visible spectrum from carbon dots excited by white light, Angew. Chem. Int. Ed, 54(2015), No. 10, p. 2970.

    CAS  Google Scholar 

  26. [26]

    T.J. Fan, W.J. Zeng, W. Tang, C.Q. Yuan, S.Z. Tong, KY. Cai, Y.D. Liu, W. Huang, Y. Min, and A.J. Epstein, Controllable size-selective method to prepare graphene quantum dots from graphene oxide, Nanoscale Res. Lett, 10(2015), No. 19, p. 55.

    Google Scholar 

  27. [27]

    J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Ed., Springer Science+Business Media, LLC, New York, 2006.

    Google Scholar 

  28. [28]

    C.Q. Zhang, Y. Yan, Q.H. Pan, L.B. Sun, H.M. He, Y.L. Liu, Z.Q. Liang, and JY. Li, A microporous lanthanum metal-organic framework as a bi-functional chemosensor for the detection of picric acid and Fe3+ ions, Dalton Trans., 44(2015), No. 29, p. 13340.

    CAS  Google Scholar 

  29. [29]

    X.H. Zhou, L. Li, H.H. Li, A. Li, T. Yang, and W. Huang, A flexible Eu(III)-based metal-organic framework: Turn-offluminescent sensor for the detection of Fe(III) and picric acid, Dalton Trans., 42(2013), No. 34, p. 12403.

    CAS  Google Scholar 

  30. [30]

    X.Q. Dong, C.L. Li, J. Li, W.T. Huang, J. Wang, and R.B. Liao, Application of a system dynamics approach for assessment of the impact of regulations on cleaner production in the electroplating industry in China, J. Cleaner Prod, 20(2012), No. 1, p. 72.

    CAS  Google Scholar 

  31. [31]

    L. Shi, J.S. Shi, and Y. Shi, Discussion on the emission standard of pollutants for electroplating, Electroplat. Finish., 28(2009), No. 5, p. 44.

    Google Scholar 

  32. [32]

    C. Shen, SY. Ge, YY. Pang, F.N. Xi, J.Y. Liu, X.P. Dong, and P. Chen, Facile and scalable preparation of highly luminescent N,S co-doped graphene quantum dots and their application for parallel detection of multiple metal ions, J. Mater. Chem. B, 5(2017), No. 32, p. 6593.

    CAS  Google Scholar 

  33. [33]

    X.F. Liu, W. Gao, X.M. Zhou, and YY. Ma, Pristine graphene quantum dots for detection of copper ions, J. Mater. Res., 29(2014), No. 13, p. 1401.

    CAS  Google Scholar 

  34. [34]

    V. Dujols, F. Ford, and AW. Czarnik, A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water, J. Am. Chem. Soc, 119(1997), No. 31, p. 7386.

    CAS  Google Scholar 

  35. [35]

    L. F an, J.C. Qin, T.R. Li, B.D. Wang, and ZY. Yang, A novel rhodamine chromone-based “Off-On” chemo sensor for the differential detection of Al(III) and Zn(II) in aqueous solutions, Sens. Actuators B, 203(2014), No. 14, p. 550.

    Google Scholar 

  36. [36]

    D. Wang, L. Wang, XY. Dong, Z. Shi, and J. Jin, Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection, Carbon, 50(2012), No. 6, p. 2147.

    CAS  Google Scholar 

  37. [37]

    J. Ju and W. Chen, Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media, Biosens. Bioelectron., 58(2014), p. 219.

    CAS  Google Scholar 

  38. [38]

    C. Yi, WW. Tian, B. Song, Y.P. Zheng, Z.J. Qi, Q. Qi, and Y.M. Sun, A new turn-offfluorescent chemosensor for iron (III) based on new diphenylfluorenes with phosphonic acid, J. Lumin., 141(2013), p. 15.

    CAS  Google Scholar 

  39. [39]

    L.Q Liu, Y.F Li, L. Zhan, Y. Liu, and C.Z. Huang, One-step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions, Sci. China Chem., 54(2011), No. 8, p. 1342.

    CAS  Google Scholar 

  40. [40]

    Y.F. Chen, C.L. Kao, P.C. Huang, CY. Hsu, and C.H. Kuei, Facile synthesis of multi-responsive functional graphene quantum dots for sensing metal cations, RSC Adv., 6(2016), No. 105, p. 103006.

    CAS  Google Scholar 

  41. [41]

    J.W. Xin, L.J. Mao, SG. Chen, and A.G. Wu, Colorimetric detection of Cr3+ using tripolyphosphate modified gold nanoparticles in aqueous solutions, Anal. Methods, 4(2012), No. 5, p. 1259.

    CAS  Google Scholar 

  42. [42]

    H. Huang, Y.H. Weng, L.H. Zheng, BX. Yao, W. Weng, and X.C. Lin, Nitrogen-doped carbon quantum dots as fluorescent probe for “off-on” detection of mercury ions, L-cysteine and iodide ions, J. Colloid Interface Sci, 506(2017), p. 373.

    CAS  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (No. 21674011) and Beijing Municipal Natural Science Foundation (No. 2172040).

Author information



Corresponding author

Correspondence to Yan Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ge, Q., Kong, Wh., Liu, Xq. et al. Hydroxylated graphene quantum dots as fluorescent probes for sensitive detection of metal ions. Int J Miner Metall Mater 27, 91–99 (2020). https://doi.org/10.1007/s12613-019-1908-4

Download citation


  • graphene quantum dots
  • surface hydroxylation
  • metal ions detection
  • fluorescent probes