Hydrogen embrittlement of X80 pipeline steel in H2S environment: Effect of hydrogen charging time, hydrogen-trapped state and hydrogen charging–releasing–recharging cycles


This study investigated the susceptibility of X80 pipeline steel to hydrogen embrittlement given different hydrogen pre-charging times and hydrogen charging–releasing–recharging cycles in H2S environment. The fracture strain of the steel samples decreased with increasing hydrogen pre-charging time; this steel degradation could almost be recovered after diffusible hydrogen was removed when the hydrogen pre-charging time was <8 d. However, unrecoverable degeneration occurred when the hydrogen pre-charging time extended to 16–30 d. Moreover, nanovoid formation meant that the hydrogen damage to the steel under intermittent hydrogen pre-charging–releasing–recharging conditions was more serious than that under continuous hydrogen pre-charging conditions. This study illustrated that the mechanical degradation of steel is inevitable in an H2S environment even if diffusible hydrogen is removed or visible hydrogen-induced cracking is neglected. Furthermore, the steel samples showed premature fractures and exhibited a hydrogen fatigue effect because the repeated entry and release of diffusible hydrogen promoted the formation of vacancies that aggregated into nanovoids. Our results provide valuable information on the mechanical degradation of steel in an H2S environment, regarding the change rules of steel mechanical properties under different hydrogen pre-charging times and hydrogen charging–releasing–recharging cycles.

This is a preview of subscription content, access via your institution.


  1. [1]

    M.R. Louthan Jr, G.R. Caskey Jr, J.A. Donovan, and D.E. Rawl Jr, Hydrogen embrittlement of metals, Mater. Sci. Eng., 10(1972). p. 357.

    CAS  Google Scholar 

  2. [2]

    P.P. Bai, J. Zhou, B.W. Luo, S.Q. Zheng, and C.F. Chen, Roles of carbon dioxide and steam on the hydrogen embrittlement of 3Cr tube steel in synthetic natural gas environment, Corros. Eng Sci. Technol, 53(2018). No. 1 p. 1.

    CAS  Google Scholar 

  3. [3]

    M. Koyama, E. Akiyama, Y.K. Lee, D. Raabe, and K. Tsuzaki, Overview of hydrogen embrittlement in high-Mn steels, Int. J. Hydrogen Energy, 42(2017). No. 17 p. 12706.

    CAS  Google Scholar 

  4. [4]

    A. Kawashima, K. Hashimoto, and S. Shimodaira, Hydrogen electrode reaction and hydrogen embrittlement of mild steel in hydrogen sulfide solutions, Corrosion, 32(1976). No. 8 p. 321.

    CAS  Google Scholar 

  5. [5]

    B.J. Berkowitz and H.H. Horowitz, The role of H2S in the corrosion and hydrogen embrittlement of steel, J. Electrochem. Soc, 129(1982). No. 3 p. 468.

    CAS  Google Scholar 

  6. [6]

    J. Woodtli and R. Kieselbach, Damage due to hydrogen embrittlement and stress corrosion cracking, Eng Fail.Anal, 7(2000). No. 6 p. 427.

    CAS  Google Scholar 

  7. [7]

    F.D. de Moraes, F.L. Bastian, and J.A. Ponciano, Influence of dynamic straining on hydrogen embrittlement of UNS-G41300 and UNS-S31803 steels in a low H2S concentration environment, Corros. Sci., 47(2005). No. 6 p. 1325.

    Google Scholar 

  8. [8]

    M. Monnot, R.P. Nogueira, V. Roche, G. Berthomé, E. Chauveau, R. Estevez, and M. Mantel, Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement, Appl. Surf. Sci., 394(2017). p. 132.

    CAS  Google Scholar 

  9. [9]

    S.H. Li, C.F. Chen, Y.N. Liu, H.B. Yu, and X.L. Wang, Influence of surface martensite layer on hydrogen embrittlement of Fe-Mn-C-Mo steels in wet H2S environment, Int. J. Hydrogen Energy, 43(2018). No. 34 p. 16728.

    CAS  Google Scholar 

  10. [10]

    W.Y. Chu, L.J. Qiao, Q.Z. Chen, and K.W. Gao, Fracture and Environment Induced Cracking, Sciences Express, Beijing, 2000, p. 106.

    Google Scholar 

  11. [11]

    J.P. Hirth, Effects of hydrogen on the properties of iron and steel, Metall. Trans. A, 11(1980). No. 6 p. 861.

    Google Scholar 

  12. [12]

    K. Takai, H. Shoda, H. Suzuki, and M. Nagumo, Lattice defects dominating hydrogen-related failure of metals, Acta Mater, 56(2008). No. 18 p. 5158.

    CAS  Google Scholar 

  13. [13]

    T. Neeraj, R. Srinivasan, and J. Li, Hydrogen embrittlement of ferritic steels: observations on deformation micro-structure, nanoscale dimples and failure by nanovoiding, Acta Mater., 60(2012), No. 13–14, p. 5160.

    CAS  Google Scholar 

  14. [14]

    D.G. Xie, S.Z. Li, M. Li, Z.J. Wang, P. Gumbsch, J. Sun, E. Ma, and Z. Shan, Hydrogenated vacancies lock dislocations in aluminium, Nat. Commun., 7(2016), art. No. 13341.

  15. [15]

    M. Hattori, H. Suzuki, Y. Seko, and K. Takai, The role of hydrogen-enhanced strain-induced lattice defects on hydrogen embrittlement susceptibility of X80 pipeline steel, JOM, 69(2017). No. 8 p. 1375.

    CAS  Google Scholar 

  16. [16]

    L. Wan, W.T. Geng, A. Ishii, J.P. Du, Q.S. Mei, N. Ishikawa, H. Kimizuka, and S. Ogata, Hydrogen embrittlement controlled by reaction of dislocation with grain boundary in alpha-iron, Int. J. Plast, 112(2019). p. 206.

    CAS  Google Scholar 

  17. [17]

    Y. Momotani, A. Shibata, D. Terada, and N. Tsuji, Effect of strain rate on hydrogen embrittlement in low-carbon martensitic steel, Int. J. Hydrogen Energy, 42(2017). No. 5 p. 3371.

    CAS  Google Scholar 

  18. [18]

    D. Pérez Escobar, T. Depover, E. Wallaert, L. Duprez, M. Verhaege, and K. Verbeken, Thermal desorption spectroscopy study of the interaction between hydrogen and different microstructural constituents in lab cast Fe-C alloys, Corros. Sci, 65(2012). p. 199.

    Google Scholar 

  19. [19]

    H.S. Noh, J.H. Kang, K.M. Kim, and S.J. Kim, The effect of carbon on hydrogen embrittlement in stable Cr-Ni-Mn-N austenitic stainless steels, Corros. Sci, 124(2017). p. 63.

    CAS  Google Scholar 

  20. [20]

    R.A. Oriani, The diffusion and trapping of hydrogen in steel, Acta Metall, 18(1970). No. 1 p. 147.

    CAS  Google Scholar 

  21. [21]

    M.Q. Wang, E. Akiyama, and K. Tsuzaki, Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test, Corros. Sci, 49(2007). No. 11 p. 4081.

    CAS  Google Scholar 

  22. [22]

    W.K. Kim, S.U. Koh, B.Y. Yang, and K.Y. Kim, Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels, Corros. Sci, 50(2008). No. 12 p. 3336.

    CAS  Google Scholar 

  23. [23]

    K. Takai and R. Watanuki, Hydrogen in trapping states innocuous to environmental degradation of high-strength steels, ISIJ Int, 43(2003). No. 4 p. 520.

    CAS  Google Scholar 

  24. [24]

    M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, and D. Raabe, Hydrogen-assisted decohesion and localized plasticity in dual-phase steel, Acta Mater, 70(2014). p. 174.

    CAS  Google Scholar 

  25. [25]

    T. Doshida and K. Takai, Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content, Acta Mater, 79(2014). p. 93.

    CAS  Google Scholar 

  26. [26]

    I. Moro, L. Briottet, P. Lemoine, E. Andrieu, C. Blanc, and G. Odemer, Hydrogen embrittlement susceptibility of a high strength steel X80, Mater. Sci Eng. A, 527(2010), No. 27–28, p. 7252.

    Google Scholar 

  27. [27]

    X. Zhu, W. Li, H.S. Zhao, L. Wang, and X.J. Jin, Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q&P) treated steel, Int. J. Hydrogen Energy, 39(2014). No. 24 p. 13031.

    CAS  Google Scholar 

  28. [28]

    S.J. Kim, D.W. Yun, H.G. Jung, and K.Y. Kim, Determination of hydrogen diffusion parameters of ferritic steel from electrochemical permeation measurement under tensile loads, J. Electrochem. Soc, 161(2014), No. 12, p. E173.

    Google Scholar 

  29. [29]

    F. Huang, X.G. Li, J. Liu, Y.M. Qu, J. Jia, and C.W. Du, Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of different microstructure X80 pipeline steel, J. Mater. Sci, 46(2011). No. 3 p. 715.

    CAS  Google Scholar 

  30. [30]

    M. Koyama, E. Akiyama, and K. Tsuzaki, Effect of hydrogen content on the embrittlement in a Fe-Mn-C twinning-induced plasticity steel, Corros. Sci, 59(2012). p. 277.

    CAS  Google Scholar 

  31. [31]

    Y.X. Chen, S.Q. Zheng, J. Zhou, P.Y. Wang, L.Q. Chen, and Y.M. Qi, Influence of H2S interaction with prestrain on the mechanical properties of high-strength X80 steel, Int. J. Hydrogen Energy, 41(2016). No. 24 p. 10412.

    CAS  Google Scholar 

  32. [32]

    P.C. Okonkwo, R.A. Shakoor, A. Soliman, and A.M.A. Mohammed, Corrosion behavior of API X-80 steel in hydrogen sulfide environment at different temperatures, [in] Corrosion 2016, Vancouver, 2016.

    Google Scholar 

  33. [33]

    K. Shen, L. Xu, Y. Guo, J. Shi, and M.Q. Wang, Effect of microstructure on hydrogen diffusion and notch tensile strength of large steel forging, Mater. Sci Eng. A, 628(2015). p. 149.

    CAS  Google Scholar 

  34. [34]

    T. Michler, M. Lindner, U. Eberle, and J. Meusinger, Assessing hydrogen embrittlement in automotive hydrogen tanks, [in] R.P. Gangloff and B.P. Somerday eds. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, Woodhead Publishing, Cambridge, 2012, p. 94.

    Google Scholar 

  35. [35]

    T. Depover and K. Verbeken, The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe-C-Ti alloys, Corros. Sci, 112(2016). p. 308.

    CAS  Google Scholar 

  36. [36]

    Y.M. Qi, H.Y. Luo, S.Q. Zheng, C.F. Chen, and D.N. Wang, Effect of immersion time on the hydrogen content and tensile properties of A350LF2 steel exposed to hydrogen sulphide environments, Corros. Sci, 69(2013). p. 164.

    CAS  Google Scholar 

  37. [37]

    J. Kittel, V. Smanio, M. Fregonese, L. Garnier, and X. Lefebvre, Hydrogen induced cracking (HIC) testing of low alloy steel in sour environment: Impact of time of exposure on the extent of damage, Corros. Sci, 52(2010). No. 4 p. 1386.

    CAS  Google Scholar 

  38. [38]

    W.Y. Chu, L.J. Qiao, Y.B. Wang, and Y.H. Cheng, Quantitative study for sulfide stress corrosion cracking of tubular steel, Corrosion, 55(1999). No. 7 p. 667.

    CAS  Google Scholar 

  39. [39]

    G. Hultquist, M.J. Graham, J.L. Smialek, and B. Jönsson, Hydrogen in metals studied by thermal desorption spectroscopy (TDS), Corros. Sci, 93(2015). p. 324.

    CAS  Google Scholar 

  40. [40]

    M. Kaneko, T. Doshida, and K. Takai, Changes in mechanical properties following cyclic prestressing of martensitic steel containing vanadium carbide in presence of nondiffusible hydrogen, Mater. Sci. Eng. A, 674(2016). p. 375.

    CAS  Google Scholar 

  41. [41]

    D. Vo, A. Lipnitskii, T. Nguyen, and T.K. Nguyen, Nitrogen trapping ability of hydrogen-induced vacancy and the effect on the formation of AlN in aluminum, Coatings 7(2017). No. 6 p. 79.

    Google Scholar 

  42. [42]

    H. Sugimoto and Y. Fukai, Hydrogen-induced superabundant vacancy formation by electrochemical methods in bcc Fe: Monte Carlo simulation, Scripta Mater., 134(2017). p. 20.

    CAS  Google Scholar 

  43. [43]

    I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, and K.E. Nygren, Hydrogen embrittlement understood, Metall. Mater. Trans. A, 46(2015). No. 6 p. 2323.

    CAS  Google Scholar 

  44. [44]

    Y. Tateyama and T. Ohno, Stability and clusterization of hydrogen-vacancy complexes in α-Fe: an ab initio study, Phys. Rev. B, 67(2003), No. 17, art. No. 174105.

  45. [45]

    H.G.F. Wilsdorf, The ductile fracture of metals: a micro-structural viewpoint, Mater. Sci. Eng., 59(1983). No. 1 p. 1.

    CAS  Google Scholar 

  46. [46]

    H.G.F. Wilsdorf, The role of glide and twinning in the final separation of ruptured gold crystals, Acta Metall, 30(1982). No. 6 p. 1247.

    CAS  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (Nos. 51805292, 51671215, and 51425502) and the National Postdoctoral Program for Innovative Talents of China (No. BX201700132).

Author information



Corresponding authors

Correspondence to Shu-qi Zheng or Yu Tian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bai, Pp., Zhou, J., Luo, Bw. et al. Hydrogen embrittlement of X80 pipeline steel in H2S environment: Effect of hydrogen charging time, hydrogen-trapped state and hydrogen charging–releasing–recharging cycles. Int J Miner Metall Mater 27, 63–73 (2020). https://doi.org/10.1007/s12613-019-1870-1

Download citation


  • high-strength steel
  • hydrogen embrittlement
  • corrosion
  • hydrogen diffusion