Skip to main content
Log in

New high-strength Ti–Al–V–Mo alloy: from high-throughput composition design to mechanical properties

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

An Erratum to this article was published on 14 January 2020

This article has been updated

Abstract

The high-throughput diffusion-multiple technique and thermodynamics databases were used to design new high-strength Ti alloys. The composition–microstructure–property relationships of the Ti64–xMo alloys were obtained. The phase fraction and composition of the α and β phases of the Ti64–xMo alloys were calculated using the Thermo-Calc software. After aging at 600°C, the Ti64–6Mo alloy precipitated ultrafine α phases. This phenomenon was explained on the basis of the pseudo-spinodal mechanism by calculating the Gibbs energy curves of the α and β phases of the Ti64–xMo alloys at 600°C. Bulk forged Ti64–6Mo alloy exhibited high strength and moderate plasticity after α/β-phase-field solution treatment plus aging. The tensile properties of the alloy were determined by the size and morphology of the primary and secondary α phases and by the β grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 14 January 2020

    The original version of this article unfortunately contained a mistake.

References

  1. H.X. Li, X.Y. Nie, Z.B. He, K.N. Zhao, Q. Du, J.S. Zhang, and L.Z. Zhuang, Interfacial microstructure and mechanical properties of Ti–6Al–4V/Al7050 joints fabricated using the insert molding method, Int. J. Miner. Metall. Mater., 24(2017), No. 12, p. 1412.

    CAS  Google Scholar 

  2. M.K. Ibrahim, E. Hamzah, S.N. Saud, E.N.E. Abu Bakar, and A. Bahador, Microwave sintering effects on the microstructure and mechanical properties of Ti–51at% Ni shape memory alloys, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 280.

    CAS  Google Scholar 

  3. R.R. Boyer, An overview on the use of titanium in the aerospace industry, Mater. Sci. Eng. A, 213(1996), No. 1–2, p. 103.

    Google Scholar 

  4. T.N. Prasanthi, C. Sudha, and S. Saroja, Effect of alloying elements on interdiffusion phenomena in explosive clads of 304LSS/Ti–5Ta–2Nb alloy, J. Mater. Sci., 51(2016), No. 11, p. 5290.

    CAS  Google Scholar 

  5. H.P. Duan, H.X. Xu, W.H. Su, Y.B. Ke, Z.Q. Liu, and H.H. Song, Effect of oxygen on the microstructure and mechanical properties of Ti–23Nb–0.7Ta–2Zr alloy, Int. J. Miner. Metall. Mater., 19(2012), No. 12, p. 1128.

    CAS  Google Scholar 

  6. S.L. Semiatin, P.N. Fagin, M.G. Glavicic, I.M. Sukonnik, and O.M. Ivasishin, Influence on texture on beta grain growth during continuous annealing of Ti–6Al–4V, Mater. Sci. Eng. A, 299(2001), No. 1–2, p. 225.

    Google Scholar 

  7. Y.J. Lai, S.W. Xin, P.X. Zhang, Y.Q. Zhao, F.J. Ma, X.H. Liu, and Y. Feng, Recrystallization behavior of Ti40 burn-resistant titanium alloy during hot working process, Int. J. Miner. Metall. Mater., 23(2016), No. 5, p. 581.

    CAS  Google Scholar 

  8. T. Seshacharyulu, S.C. Medeiros, J.T. Morgan, J.C. Malas, W.G. Frazier, and Y.V.R.K. Prasad, Hot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti–6Al–4V, Mater. Sci. Eng. A, 279(2000), No. 1–2, p. 289.

    Google Scholar 

  9. A. Nocivin, I. Cinca, D. Raducanu, V.D. Cojocaru, and I.A. Popovici, Mechanical properties of a Gum-type Ti–Nb–Zr–Fe–O alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 909.

    CAS  Google Scholar 

  10. S. Raghunathan, R.J. Dashwood, M. Jackson, S.C. Vogel, and D. Dye, The evolution of microtexture and macrotexture during subtransus forging of Ti–10V–2Fe–3Al, Mater. Sci. Eng. A, 488(2008), No. 1–2, p. 8.

    Google Scholar 

  11. G.T. Terlinde, T.W. Duerig, and J.C. Williams, Microstructure, tensile deformation, and fracture in aged ti 10V–2Fe–3Al, Metall. Trans. A, 14(1983), No. 10, p. 2101.

    Google Scholar 

  12. B. He, X.J. Tian, X. Cheng, J. Li, and H.M. Wang, Effect of weld repair on microstructure and mechanical properties of laser additive manufactured Ti-55511 alloy, Mater. Des., 119(2017), p. 437.

    CAS  Google Scholar 

  13. S. Nag, R. Banerjee, J.Y. Hwang, M. Harper, and H.L. Fraser, Elemental partitioning between α and β phases in the Ti–5Al–5Mo–5V–3Cr–0.5Fe (Ti-5553) alloy, Philos. Mag., 89(2009), No. 6, p. 535.

    CAS  Google Scholar 

  14. F.W. Chen, G.L. Xu, X.Y. Zhang, K.C. Zhou, and Y.W. Cui, Effect of α morphology on the diffusional β↔α transformation in Ti-55531 during continuous heating: Dissection by dilatometer test, microstructure observation and calculation, J. Alloys Compd., 702(2017), No. 25, p. 352.

    CAS  Google Scholar 

  15. J.K. Fan, J.S. Li, H.C. Kou, K. Hua, and B. Tang, The interrelationship of fracture toughness and microstructure in a new near β titanium alloy Ti–7Mo–3Nb–3Cr–3Al, Mater. Charact., 96(2014), p. 93.

    CAS  Google Scholar 

  16. B. Cherukuri, R. Srinivasan, S. Tamirisakandala, and D.B. Miracle, The influence of trace boron addition on grain growth kinetics of the beta phase in the beta titanium alloy Ti–15Mo–2.6Nb–3Al–0.2Si, Scripta Mater., 60(2009), No. 7, p. 496.

    CAS  Google Scholar 

  17. N.G. Jones, R.J. Dashwood, M. Jackson, and D. Dye, Development of chevron-shaped α precipitates in Ti–5Al–5Mo–5V–3Cr, Scripta Mater., 60(2009), No. 7, p. 571.

    CAS  Google Scholar 

  18. A. Dehghan-Manshadi and R.J. Dippenaar, Development of α-phase morphologies during low temperature isothermal heat treatment of a Ti–5Al–5Mo–5V–3Cr alloy, Mater. Sci. Eng. A, 528(2011), No. 3, p 1833.

    Google Scholar 

  19. J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, and J.S. Li, Characterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333, Mater. Des., 49(2013), p. 945.

    CAS  Google Scholar 

  20. J.I. Qazi, H.J. Rack, and B. Marquardt, High-strength metastable beta-titanium alloys for biomedical applications, JOM, 56(2004), No. 11, p. 49.

    CAS  Google Scholar 

  21. R. Banerjee, S. Nag, J. Stechschulte, and H.L. Fraser, Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys, Biomaterials, 25(2004), No. 17, p. 3413.

    CAS  Google Scholar 

  22. T. Zhou, M. Aindow, S.P. Alpay, M.J. Blackburn, and M.H. Wu, Pseudo-elastic deformation behavior in a Ti/Mo-based alloy, Scripta Mater., 50(2004), No. 3, p. 343.

    CAS  Google Scholar 

  23. T. Oyama, C. Watanabe, and R. Monzen, Growth kinetics of ellipsoidal ω-precipitates in a Ti–20 wt%Mo alloy under compressive stress, J. Mater. Sci., 51(2016), No. 19, p. 8880.

    CAS  Google Scholar 

  24. C.H. Wang, C.D. Yang, M. Liu, X. Li, P.F. Hu, A.M. Russell, and G.H. Cao, Martensitic microstructures and mechanical properties of as-quenched metastable β-type Ti–Mo alloys, J. Mater. Sci., 51(2016), No. 14, p. 6886.

    CAS  Google Scholar 

  25. R. Monzen, R. Kawai, T. Oyama, and C. Watanabe, Tensile-stress-induced growth of ellipsoidal ω-precipitates in a Ti–20wt%Mo Alloy, J. Mater. Sci., 51(2016), No. 5, p. 2490.

    CAS  Google Scholar 

  26. J.C. Zhao, A combinatorial approach for efficient mapping of phase diagrams and properties, J. Mater. Res., 16(2001), No. 6, p. 1565.

    CAS  Google Scholar 

  27. J.C. Zhao, X. Zheng, and D.G. Cahill, High-throughput diffusion multiples, Mater. Today, 8(2005), No. 10, p. 28.

    CAS  Google Scholar 

  28. J.C. Zhao, X. Zheng, and D.G. Cahill, High-throughput measurements of materials properties, JOM, 63(2011), No. 3, p. 40.

    Google Scholar 

  29. X. Zheng, D.G. Cahill, P. Krasnochtchekov, R.S. Averback, and J.C. Zhao, High-throughput thermal conductivity measurements of nickel solid solutions and the applicability of the Wiedemann-Franz law, Acta Mater., 55(2007), No. 15, p. 5177.

    CAS  Google Scholar 

  30. X.D. Zhang, L.B. Liu, J.C. Zhao, J.L. Wang, F. Zheng, and Z.P. Jin, High-efficiency combinatorial approach as an effective tool for accelerating metallic biomaterials research and discovery, Mater. Sci. Eng. C, 39(2014), No. 1, p. 273.

    CAS  Google Scholar 

  31. D. Wu, L.B. Liu, L.G. Zhang, L.J. Zeng, and X. Shi, Investigation of the influence of Cr on the microstructure and properties of Ti6Al4VxCr alloys with a combinatorial approach, J. Mater. Eng. Perform., 26(2017), No. 9, p. 4364.

    CAS  Google Scholar 

  32. C. Wang, N. Li, Y. Cui, and M.T. Pérez-Prado, Effect of solutes on the rate sensitivity in Ti–xAl–yMo–zV and Ti–xAl–yMo–zCr β–Ti alloys, Scripta Mater., 149(2018), p. 129.

    CAS  Google Scholar 

  33. J.C. Williams and B.S. Hickman, Tempering behavior of orthorhombic martensite in titanium alloys, Metall. Mater. Trans. B, 1(1970), No. 9, p. 2648.

    CAS  Google Scholar 

  34. H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, and S. Miyazaki, Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys, Acta Mater., 54(2006), No. 9, p. 2419.

    CAS  Google Scholar 

  35. W.F. Ho, S.C. Wu, S.K. Hsu, Y.C. Li, and H.C. Hsu, Effects of molybdenum content on the structure and mechanical properties of as-cast Ti–10Zr-based alloys for biomedical applications, Mater. Sci. Eng. C, 32(2012), No. 3, p. 517.

    CAS  Google Scholar 

  36. W.F. Ho, S.C. Wu, H.H. Chang, and H.C. Hsu, Structure and mechanical properties of Ti–5Cr based alloy with Mo addition, Mater. Sci. Eng. C, 30(2010), No. 6, p. 904.

    CAS  Google Scholar 

  37. Z. Du, S. Xiao, L. Xu, J. Tian, F. Kong, and Y. Chen, Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy, Mater. Des., 55(2014), No. 55, p. 183.

    CAS  Google Scholar 

  38. W.F. Ho, C.P. Ju, and J.H. Lin, Structure and properties of cast binary Ti–Mo alloys, Biomaterials, 20(1999), No. 22, p. 2115.

    CAS  Google Scholar 

  39. Y. Ni and A.G. Khachaturyan, From chessboard tweed to chessboard nanowire structure during pseudospinodal decomposition, Nat. Mater., 8(2009), No. 5, p. 410.

    CAS  Google Scholar 

  40. N.T.C. Oliveira and A.C. Guastaldi, Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications, Acta Biomater., 5(2009), No. 1, p. 399.

    CAS  Google Scholar 

  41. S.K. Kar, A. Ghosh, N. Fulzele, and A. Bhattacharjee, Quantitative microstructural characterization of a near beta Ti alloy, Ti-5553 under different processing conditions, Mater. Charact., 81(2013), No. 4, p. 37.

    CAS  Google Scholar 

  42. C.Y. Wang, L.W. Yang, Y.W. Cui, and M.T. Pérez-Prado, High throughput analysis of solute effects on the mechanical behavior and slip activity of beta titanium alloys, Mater. Des., 137(2017), p. 371.

    Google Scholar 

  43. L. Mora, C. Quesne, C. Haut, C. Servant, and R. Penelle, Relationships among thermomechanical treatments, microstructure, and tensile properties of a near beta-titanium alloy: β-CEZ: Part I. relationships between thermomechanical treatments and microstructure, J. Mater. Res., 11(1996), No. 1, p. 89.

    CAS  Google Scholar 

  44. G. Srinivasu, Y. Natraj, A. Bhattacharjee, T.K. Nandy, and G.V.S.N. Rao, Tensile and fracture toughness of high strength β titanium alloy, Ti–10V–2Fe–3Al, as a function of rolling and solution treatment temperatures, Mater. Des., 47(2013), p. 323.

    CAS  Google Scholar 

  45. J. Huang, Z. Wang, and K. Xue, Cyclic deformation response and micromechanisms of Ti alloy Ti–5Al–5V–5Mo–3Cr–0.5Fe, Mater. Sci. Eng. A, 528(2011), No. 29–30, p. 8723.

    CAS  Google Scholar 

  46. M. Jackson, N.G. Jones, D. Dye, and R.J. Dashwood, Effect of initial microstructure on plastic flow behaviour during isothermal forging of Ti–10V–2Fe–3Al, Mater. Sci. Eng. A, 501(2009), No. 1–2, p. 248.

    Google Scholar 

  47. D. Qin, Y. Lu, D. Guo, L. Zheng, Q. Liu, and L. Zhou, Tensile deformation and fracture of Ti–5Al–5V–5Mo–3Cr–1.5Zr–0.5Fe alloy at room temperature, Mater. Sci. Eng. A, 587(2013), p. 100.

    CAS  Google Scholar 

  48. W.F. Ho, S.C. Wu, S.K. Hsu, Y.C. Li, and H.C. Hsu, Effects of molybdenum content on the structure and mechanical properties of as-cast Ti–10Zr-based alloys for biomedical applications, Mater. Sci. Eng. C, 32(2012), No. 3, p. 517.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Key Technologies R&D Program of China (Grant No. 2016YFB0701301 and 2018YFB0704100), National Natural Science Foundation of China (Grant No. 51671218 and 51501229), National Key Basic Research Program of China (973 Program) (Grant No. 2014CB644000) and State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke-chao Zhou or Li-bin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Wang, Wl., Zhang, Lg. et al. New high-strength Ti–Al–V–Mo alloy: from high-throughput composition design to mechanical properties. Int J Miner Metall Mater 26, 1151–1165 (2019). https://doi.org/10.1007/s12613-019-1854-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1854-1

Keywords

Navigation