Skip to main content
Log in

Effect of annealing temperature on the microstructure and optoelectrical properties of ZnO thin films and their application in self-powered accelerometers

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

This paper reports a piezoelectric nanogenerator (NG) with a thickness of approximately 80 μm for miniaturized self-powered acceleration sensors. To deposit the piezoelectric zinc oxide (ZnO) thin film, a magnetron sputtering machine was used. Polymethyl methacrylate (PMMA) and aluminum-doped zinc oxide (AZO) were used as the insulating layer and the top electrode of the NG, respectively. The experimental results show that the ZnO thin films annealed at 150°C exhibited the highest crystallinity among the prepared films and an optical band gap of 3.24 eV. The NG fabricated with an AZO/PMMA/ZnO/stainless steel configuration exhibited a higher output voltage than the device with an AZO/ZnO/PMMA/stainless steel configuration. In addition, the annealing temperature affected the open-circuit voltage of the NGs; the output voltage reached 3.81 V when the annealing temperature was 150°C. The open-circuit voltage of the prepared self-powered accelerometer increased linearly with acceleration. In addition, the small NG-based accelerometer, which exhibited excellent fatigue resistance, can be used for acceleration measurements of small and lightweight devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z.L. Wang and W.Z. Wu, Nanotechnology-enabled genergy harvesting for self-powered micro-nanosystems, Angew. Chem. Int. Ed., 51(2012), No. 41, p. 11700.

    Article  Google Scholar 

  2. N.S. Lewis, Toward cost-effective solar energy use, Science, 315(2007), No. 5813, p. 798.

    Article  Google Scholar 

  3. N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra, M.K. Gupta, and B. Kumar, Y-doped ZnO nanosheets: gigantic piezoelectric response for an ultra sensitive flexible piezoelectric nanogenerator, Ceram. Int., 44(2018), No. 7, p. 8582.

    Article  Google Scholar 

  4. P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, and T.C. Green, Energy harvesting from human and machine motion for wireless electronic devices, Proc. IEEE., 96(2008), No. 9, p. 1457.

    Article  Google Scholar 

  5. S. Saadon and O. Sidek, A review of vibration-based MEMS piezoelectric energy harvesters, Energy Convers. Manage., 52(2011), No. 1, p. 500.

    Article  Google Scholar 

  6. A. Harb, Energy harvesting: State of the art, Renewable Energy, 36(2011), No. 10, p. 2641.

    Article  Google Scholar 

  7. C.R. Bowen, H.A. Kim, P.M. Weaver, and S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications, Energy Environ. Sci., 7(2013), No. 1, p. 25.

    Article  Google Scholar 

  8. P.H. Wang and H. Du, ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance, Rev. Sci. Instrum., 86(2015), No. 7, p. 1131.

    Google Scholar 

  9. P.H. Wang, K. Tanaka, S. Sugiyama, X.H. Dai, X.L. Zhao, and J.Q. Liu, A micro electromagnetic low level vibration energy harvester based on M.M. technology, Microsyst. Technol., 15(2009), No. 6, p. 941.

    Article  Google Scholar 

  10. P.H. Wang, H.J. Du, S.N. Shen, M.S. Zhang, and B. Liu, Deposition, characterization and optimization of zinc oxide thin film for piezoelectric cantilevers, Appl. Surf. Sci., 258(2012), No. 24, p. 9510.

    Article  Google Scholar 

  11. P.H. Wang, H.J. Du, S.N. Shen, M.S. Zhang, and B. Liu, Preparation and characterization of ZnO microcantilever for nanoactuation, Nanoscale. Res. Lett., 7(2012), p. 1.

    Article  Google Scholar 

  12. P.H. Wang, L. Pan, J.Y. Wang, M.Y. Xu, G.Z. Dai, H.Y. Zou, K. Dong, and Z.L. Wang, An ultra-low-friction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor, ACS Nano, 12(2018) No. 9, p. 9433.

    Article  Google Scholar 

  13. P.H. Wang, R.Y. Liu, W.B. Ding, P. Zhang, L. Pan, G.Z. Dai, H.Y. Zou, K. Dong, C. Xu, and Z.L. Wang, Complementary electromagnetic-triboelectric active sensor for detecting multiple mechanical triggering, Adv. Funct. Mater., 28(2018), No. 11, art. No. 1705808.

    Google Scholar 

  14. S. Wang, L. Lin, and Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics, Nano Lett., 12(2012), No. 12, p. 6339.

    Article  Google Scholar 

  15. Z.L. Wang, Self-powered nanosensors and nanosystems, Adv. Mater., 24(2012), No. 2, p. 280.

    Article  Google Scholar 

  16. Y.P. Xia, P.H. Wang, S.W. Shi, G. He, M. Zhang, J.G. Lü, and Z.Q. Sun, Effect of oxygen partial pressure and transparent substrates on the structural and optical properties of ZnO thin films and their performance in energy harvesters, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 675.

    Article  Google Scholar 

  17. G. Chen, C. Song, and F. Pan, Magnetoresistive sensors with hybrid Co/insulator/ZnO: Co junctions, Int. J. Miner. Metall. Mater., 20(2013), No. 2, p. 160.

    Article  Google Scholar 

  18. Z.S. Chen, B. Guo, Y.M. Yang, and C.C. Cheng, Metamaterials-based enhanced energy harvesting: a review, Physica B, 438(2014), p. 1.

    Article  Google Scholar 

  19. R. Gerhard-Multhaupt, G.M. Sessler, and J.E. West, Ultrasonic velocity and absorption in thin polymer films, [in] Conference Proceedings of Ultrasonics International, 1985, p. 317.

    Google Scholar 

  20. A. Toprak and O. Tigli, Piezoelectric energy harvesting: state-of-the-art and challenges, Appl. Phys. Rev., 1(2014), No. 3, p. 5880.

    Article  Google Scholar 

  21. R. Ahmed, F. Mir, and S. Banerjee, A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity, Smart Mater. Struct., 26(2017), No. 8, art. No. 085031.

    Google Scholar 

  22. B. Kumar and S.W. Kim, Energy harvesting based on semiconducting piezoelectric ZnO nanostructures, Nano Energy, 1(2012), No. 3, p. 342.

    Article  Google Scholar 

  23. J.X. Zhao, J. Yang, Z.W. Lin, N. Zhao, J. Liu, Y.M. Wen, and P. Li, An arc-shaped piezoelectric generator for multi-directional wind energy harvesting, Sensors Actuat. A, 236(2015), p. 173.

    Article  Google Scholar 

  24. D.W. Kang, J.S. Choi, J.W. Lee, and G.R. Tack, Prediction of energy consumption according to physical activity intensity in daily life using accelerometer, Int. J. Precis. Eng. Manuf., 13(2012), No. 4, p. 617.

    Article  Google Scholar 

  25. S.R. Chung, T.H. Yang, H.C. Shin, et al., Initial total bilirubin and clinical outcome in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention with drug-eluting stents, Circ. J., 80(2016), No. 6, p. 1437.

    Article  Google Scholar 

  26. M.S. Vijaya, Piezoelectric Materials and Devices: Applications in Engineering and Medical Sciences, CRC Press, USA, 2013.

    Google Scholar 

  27. C.W. de Silva, Sensors and Actuators: Control Systems Instrumentation, CRC Press, USA, 2007, p. 696.

    Book  Google Scholar 

  28. S. Joshi, M.M. Nayak, and K. Rajanna, Effect of post-deposition annealing on transverse piezoelectric coefficient and vibration sensing performance of ZnO thin films, Appl. Surf. Sci., 296(2014), p. 169.

    Article  Google Scholar 

  29. R. Ondo-Ndong, G. Ferblantier, M.A. Kalfioui, A. Foucaran, and A. Boyer, Properties of RF magnetron sputtered zinc oxide thin films, J. Cryst. Growth, 255(2003), No. 1–2, p. 130.

    Article  Google Scholar 

  30. A.A.M. Ralib, A.N. Nordin, H. Salleh, and R. Othman, Fabrication of aluminium doped zinc oxide piezoelectric thin film on a silicon substrate for piezoelectric MEMS energy harvesters, Microsyst. Technol., 18(2012), No. 11, p. 1761.

    Article  Google Scholar 

  31. M.S. Wang, E.J. Kim, J.S. Chung, E.W. Shin, S.H. Hahn, and K.E. Lee, Influence of annealing temperature on the structural and optical properties of sol-gel prepared ZnO thin films, Phys. Status Solidi A, 203(2006), No. 10, p. 2418.

    Article  Google Scholar 

  32. A.K. Zak, M.E. Abrishami, W. H.A. Majid, R. Yousefi, and S.M. Hosseini, Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method, Ceram. Int., 37(2011), No. 1, p. 393.

    Article  Google Scholar 

  33. W.Z. Wu and Z.L. Wang, Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics, Nat. Rev. Mater., 1(2016), art. No. 16031.

    Google Scholar 

  34. Z.N. Wang, R.M. Yu, C.F. Pan, Z.L. Li, J. Yang, F. Yi, and Z.L. Wang, Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing, Nat. Commun., 6(2015), p. 8401.

    Article  Google Scholar 

  35. Z. Wang, R. Yu, X. Wang, W. Wu, and Z.L. Wang, Ultrafast response p-Si/n-ZnO heterojunction ultraviolet detector based on pyro-phototronic effect, Adv. Mater., 28(2016), No. 32, p. 6880.

    Article  Google Scholar 

  36. M. Louhichi, Z.B. Hamed, S. Romdhane, D.A.M. Egbecd, and H. Bouchrihaa, The effect of the Al concentration on efficiency of the hybrid AnE-PVstat:Al-doped ZnO nanocrystal solar cells, Opt. Mater., 73(2017), p. 473.

    Article  Google Scholar 

  37. S. Lee, J. Hong, C. Xu, M. Lee, D. Kim, L. Lin, W. Hwang, and Z.L. Wang, Toward robust nanogenerators using aluminum substrate, Adv. Mater., 24(2012), No. 32, p. 4398.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61671017), Key Project of Excellent Youth Talent Support Program in Colleges and Universities of Anhui Province (No. gxyqZD2018004), Provincial Natural Science Foundation of Anhui Higher Education Institution of China (No. KJ2016A787), and Anhui Provincial Natural Science Foundation of China (No. 1508085ME72).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-hong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xz., Xia, Yp., Liu, X. et al. Effect of annealing temperature on the microstructure and optoelectrical properties of ZnO thin films and their application in self-powered accelerometers. Int J Miner Metall Mater 26, 1186–1193 (2019). https://doi.org/10.1007/s12613-019-1828-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1828-3

Keywords

Navigation