Skip to main content

Advertisement

Log in

Graphite addition for SiC formation in diamond/SiC/Si composite preparation

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Herein, graphite was used in the Si-vapor reactive infiltration of diamond/SiC/Si composites to produce composites with various SiC contents. X-ray diffraction was used to determine the phases of the composite, whereas scanning electron microscopy was used to confirm the Si–C reaction between the silicon, graphite, and diamond and to observe the SiC morphology. Various SiC contents in the composite were observed with graphite addition. Furthermore, the reaction between silicon and graphite (diamond) produced coarse (fine) SiC particles. The generation of a 10-μm-diameter Si–C area on the surface of the diamond was observed. The thermal conductivity (TC) and coefficient of thermal expansion (CTE) of the composite was investigated, where the TC varied from 317–426 W•m−1•K−1 with the increase of the SiC volume fraction from 38% to 76% and the corresponding CTE increased from 1.7 × 10-6 to 3.7 × 10−6 K−1, respectively. Furthermore, a critical point for the CTE was found to exist at approximately 250°C, where the composite was under a hydrostatic condition. Finally, the bending strength was found to range from 241 to 341 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.F. Zhao, Y.S. Liu, W. Feng, Q. Zhang, L.F. Cheng, and L.T. Zhang, Improvement on the thermal conductivity of di-amond/CVI-SiC composites using large diamond particles, Diamond Relat. Mater., 74(2017), p. 1.

    Article  Google Scholar 

  2. B. Matthey, S. Höhn, A.K. Wolfrum, U. Mühle, M. Motylenko, D. Rafaja, A. Michaelis, and M. Herrmann, Micro-structural investigation of diamond-SiC composites produced by pressureless silicon infiltration, J. Eur. Ceram. Soc., 37(2017), No. 5, p. 1917.

    Article  Google Scholar 

  3. Y.Y. Li, Y. Yu, X.X. Cao, Q. Wang, T. Li, Z. Hu, H.L. He, and D.W. He, Enhancing dynamic strength of diamond-SiC composite: Design and performance, Comput. Mater. Sci., 145(2018), p. 80.

    Article  Google Scholar 

  4. G.A. Voronin, T.W. Zerda, J. Qian, Y. Zhao, D. He, and S.N. Dub, Diamond–SiC nanocomposites sintered from a mixture of diamond and silicon nanopowders, Diamond Relat. Mater., 12(2003), No. 9, p. 1477.

    Article  Google Scholar 

  5. E.A. Ekimov, S. Gierlotka, E.L. Gromnitskaya, J.A. Kozubowski, B. Palosz, W. Lojkowski, and A.M. Naletov, Mechanical properties and microstructure of diamond–SiC nanocomposites, Inorg. Mater., 38(2002), No. 11, p. 1117.

    Article  Google Scholar 

  6. Y. Zhao, J. Qian, L.L. Daemen, C. Pantea, J. Zhang, G.A. Voronin, and T.W. Zerda, Enhancement of fracture toughness in nanostructured diamond–SiC composites, Appl. Phys. Lett., 84(2004), No. 8, p. 1356.

    Article  Google Scholar 

  7. J. Qian, G. Voronin, T.W. Zerda, D. He, and Y. Zhao, High-pressure, high-temperature sintering of diamond–SiC composites by ball-milled diamond–Si mixtures, J. Mater. Res., 17(2002), No. 8, p. 2153.

    Article  Google Scholar 

  8. J. Gubicza, T. Ungár, Y. Wang, G. Voronin, C. Pantea, and T.W. Zerda, Microstructure of diamond–SiC nanocomposites determined by x-ray line profile analysis, Diamond Relat. Mater., 15(2006), No. 9, p. 1452.

    Article  Google Scholar 

  9. C. Pantea, A.G. Voronin, T.W. Zerda, J.Z. Zhang, L.P. Wang, Y.B. Wang, T. Uchida, and Y.S. Zhao, Kinetics of SiC formation during high P–T reaction between diamond and silicon, Diamond Relat. Mater., 14(2005), No. 10, p. 1611.

    Article  Google Scholar 

  10. E.A. Ekimov, A.G. Gavriliuk, B. Palosz, S. Gierlotka, P. Dluzewski, E. Tatianin, Yu. Kluev, A.M. Naletov, and A. Presz, High-pressure, high-temperature synthesis of SiC–diamond nanocrystalline ceramics, Appl. Phys. Lett., 77(2000), No. 7, p. 954.

    Article  Google Scholar 

  11. C.X. Zhu, J. Lang, and N.G. Ma, Preparation of Si–diamond–SiC composites by in-situ reactive sintering and their thermal properties, Ceram. Int., 38(2012), No. 8, p. 6131.

    Article  Google Scholar 

  12. K. Mlungwane, M. Herrmann, and I. Sigalas, The low-pressure infiltration of diamond by silicon to form diamond–silicon carbide composites, J. Eur. Ceram. Soc., 28(2008), No. 1, p. 321.

    Article  Google Scholar 

  13. P. Unifantowicz, S. Vaucher, M. Lewandowska, and K.J. Kurzydłowski, Mechanism of SiC crystals growth on {100} and {111} diamond surfaces upon microwave heating, Mater. Charact., 61(2010), No. 6, p. 648.

    Article  Google Scholar 

  14. A.A. Shiryaev and F. Gaillard, Local redox buffering by carbon at low pressures and the formation of moissanite–natural SiC, Eur. J. Mineral., 26(2014), No. 1, p. 53.

    Article  Google Scholar 

  15. H. Zhou, and R.N. Singh, Kinetics model for the growth of silicon carbide by the reaction of liquid silicon with carbon, J. Am. Ceram. Soc., 78 (1995), No. 9, p. 2456.

    Article  Google Scholar 

  16. F. Hodaj, O. Dezellus, J.N. Barbier, A. Mortensen, and N. Eustathopoulos, Diffusion-limited reactive wetting: effect of interfacial reaction behind the advancing triple line, J. Mater. Sci., 42(2007), No. 19, p. 8071.

    Article  Google Scholar 

  17. K. Mlungwane, I. Sigalas, M. Herrmann, and M. Rodríguez, The wetting behaviour and reaction kinetics in diamond–silicon carbide systems, Ceram. Int., 35(2009), No. 6, p. 2435.

    Article  Google Scholar 

  18. J.S. Park, R. Sinclair, D. Rowcliffe, M. Stern, and H. Davidson, Orientation relationship in diamond and silicon carbide composites, Diamond Relat. Mater., 16(2007), No. 3, p. 562.

    Article  Google Scholar 

  19. D. Wittorf, W. Jäger, C. Dieker, A. Flöter, and H. Güttler, Electron microscopy of interfaces in chemical vapour deposition diamond films on silicon, Diamond Relat. Mater., 9(2000), No. 9–10, p. 1696.

    Article  Google Scholar 

  20. L. Xue, Z.A. Su, X. Yang, D. Huang, T. Yin, C.X. Liu, and Q.Z. Huang, Microstructure and ablation behavior of C/C-HfC composites prepared by precursor infiltration and pyrolysis, Corros. Sci., 94(2015), p. 165.

    Article  Google Scholar 

  21. Y. Liu, Q.G. Fu, B.H. Wang, T.Y. Liu, and J. Sun, The ablation behavior and mechanical property of C/C-SiC-ZrB2 composites fabricated by reactive melt infiltration, Ceram. Int., 43 (2017), No. 8, p. 6138.

    Article  Google Scholar 

  22. Y. Jiang, D. Feng, C.C. Ye, W. Wang, and H.Q. Ru, Preparation and characterization of Si-SiC coated graphite materials, J. Mater. Metall., 17(2018), No. 1, p. 50.

    Google Scholar 

  23. Q.G. Fu, Y.C. Shan, C.W. Cao, H.J. Li, and K.Z. Li, Oxidation and erosion resistant property of SiC/Si-Mo-Cr/MoSi2 multi-layer coated C/C composites, Ceram. Int., 41(2014), No. 3, p. 4101.

    Article  Google Scholar 

  24. M. Herrmann, B. Matthey, S. Höhn, I. Kinski, D. Rafaja, and A. Michaelis, Diamond-ceramics composites—New materials for a wide range of challenging applications, J. Eur. Ceram. Soc., 32(2012), No. 9, p. 1915.

    Article  Google Scholar 

  25. R.J. Liu, Y.B. Cao, C.L. Yan, C.R. Zhang, and P.B. He, Preparation and characterization of diamond-silicon carbide-silicon composites by gaseous silicon vacuum infiltration process, J. Superhard Mater., 36(2014), No. 6, p. 410.

    Article  Google Scholar 

  26. L. Chen, X. Yang, Z.A. Su, C.Q. Fang, G. Zeng, and Q.Z. Huang, Fabrication and performance of micro-diamond modified C/SiC composites via precursor impregnation and pyrolysis process, Ceram. Int., 44(2018), No. 8, p. 9601.

    Article  Google Scholar 

  27. Z.Q. Tan, Z.Z. Chen, G.L. Fan, G. Li, J. Zhang, R. Xu, A.D. Shan, Z.J. Li, and D. Zhang, Effect of particle size on the thermal and mechanical properties of aluminum composites reinforced with sic and diamond, Mater. Des., 90(2016), 845–851.

    Article  Google Scholar 

  28. S. Nauyoks, M. Wieligor, T.W. Zerda, L. Balogh, T. Ungar, and P. Stephens, Stress and dislocations in diamond–SiC composites sintered at high pressure, high temperature conditions, Composites Part A, 40(2009), No. 5, p. 566.

    Article  Google Scholar 

  29. M.S. Khorrami, M. Kazeminezhad, Y. Miyashita, and A.H. Kokabi, Improvement in the mechanical properties of Al/SiC nanocomposites fabricated by severe plastic deformation and friction stir processing, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 297.

    Article  Google Scholar 

  30. M. Tayyebi and B. Eghbali, Microstructure and mechanical properties of SiC-particle-strengthening tri-metal Al/Cu/Ni composite produced by accumulative roll bonding process, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 357.

    Article  Google Scholar 

  31. Y.S. Liu, C.H. Hu, W. Feng, J. Men, L.F. Cheng, and L.T. Zhang, Microstructure and properties of diamond/SiC composites prepared by tape-casting and chemical vapor infiltration process, J. Eur. Ceram. Soc., 34(2014), No. 15, p. 3489.

    Article  Google Scholar 

  32. Y.S. Liu, C.H. Hu, J. Men, W. Feng, L.F. Cheng, and L.T. Zhang, Effect of diamond content on microstructure and properties of diamond/SiC composites prepared by tape-casting and cvi process, J. Eur. Ceram. Soc., 35(2015), No. 8, p. 2233.

    Article  Google Scholar 

  33. P. Sangsuwan, S.N. Tewari, J.E. Gatica, M. Singh, and R. Dickerson, Reactive infiltration of silicon melt through microporous amorphous carbon preforms, Metall. Mater. Trans. B, 30(1999), No. 5, p. 933.

    Article  Google Scholar 

  34. E. Fitzer and R. Gadow, Fiber-reinforced silicon carbide, Am. Ceram. Soc. Bull., 65(1986), No. 2, p. 326.

    Google Scholar 

  35. M.H. Hon and R.F. Davis, Self-diffusion of 14C in polycrys-talline β-SiC, J. Mater. Sci., 14(1979), No. 10, p. 2411.

    Article  Google Scholar 

  36. R. Pampuch, E. Walasek, and J. Bialoskórski, Reaction mechanism in carbon-liquid silicon systems at elevated temperature, Ceram. Int., 12(1986), No. 2, p. 99.

    Article  Google Scholar 

  37. G.R. Sawyer and T.F. Page, Microstructural characterization of “REFEL” (reaction-bonded) silicon carbides, J. Mater. Sci., 13(1978), No. 4, p. 885.

    Article  Google Scholar 

  38. Ness, J. N. and Page, T. F, Microstructural evolution in reaction-bonded silicon carbide, J. Mater. Sci., 21(1986), No. 4, p. 1377.

    Article  Google Scholar 

  39. M.H. Hon, R.F. Davis, and D.E. Newbury, Self-diffusion of 30Si in polycrystalline β-SiC, J. Mater. Sci., 15(1980), No. 8, p. 2073.

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Key R&D Program of China (Nos. 2016YFB0301402 and 2016YFB0301400) and the National Natural Science Foundation of China (No. 51274040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., He, Xb., Wu, M. et al. Graphite addition for SiC formation in diamond/SiC/Si composite preparation. Int J Miner Metall Mater 26, 1166–1176 (2019). https://doi.org/10.1007/s12613-019-1808-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1808-7

Keywords

Navigation