Skip to main content
Log in

Micromorphology and physicochemical properties of hydrophobic blasting dust in iron mines

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The micromorphology and physicochemical properties of hydrophobic blasting dust (HBD) from an iron mine were comprehensively analyzed by laser particle size analysis (LPSA), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results show that the HBD particles can be classified into three types based on their particle size (PS): larger particles (PS > 10 µm), medium particles (1 µm ≤ PS ≤ 10 µm), and nanoparticles (PS > 1 µm). The cumulative volume of respirable dust (PS > 10 µm) was 84.45%. In addition, three shapes of HBD were observed by SEM: prism, flake, and bulk. In particular, the small particles were mostly flaky, with a greater possibility of being inhaled. Furthermore, the body and surface chemical compounds of HBD were determined by XRD and XPS, respectively. Ammonium adipate (C6H16N2O4) was the only organic compound in the body of HBD, but its mass fraction was only 13.4%. However, the content of organic C on the surface of HBD was 85.35%. This study demonstrated that the small-particle size and large amount of organic matter on the surface of HBD are the main reasons for its hydrophobicity, which can provide important guidance for controlling respirable dust in iron mines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X.T. Feng, J.P Liu, B.R Chen, Y.X Xiao, G.L Feng, and F.P Zhang, Monitoring, warning, and control of rockburst in deep metal mines, Engineering, 3(2017), No. 4, p. 538.

    Article  CAS  Google Scholar 

  2. M.F. Cai, Prediction and prevention of rockburst in metal mines-A case study of Sanshandao gold mine, J. Rock Mech. Geotech. Eng. 8(2016), No. 2, p. 204.

    Article  Google Scholar 

  3. G.Y. Zhao, M.A. Ju, L.J. Dong, X.B. Li, G.H. Chen, and C.X. Zhang, Classification of mine blasts and microseismic events using starting-up features in seismograms, Trans. Nonferrous Met. Soc. China, 25(2015), No. 10, p. 3410.

    Article  Google Scholar 

  4. T. Norgate and N. Haque, Energy and greenhouse gas impacts of mining and mineral processing operations, J. Cleaner Prod., 18(2010), No. 3, p. 266.

    Article  CAS  Google Scholar 

  5. M.I. Greenberg, J. Waksman, and J. Curtis, Silicosis: A review, Disease-a-Month, 53(2007), No. 8, p. 394.

    Article  Google Scholar 

  6. X.Z. Wang, Z.A. Jiang, S.W. Wang, and Y. Liu, Numerical simulation of distribution regularities of dust concentration during the ventilation process of coal roadway driving, J. China Coal Soc., 32(2007), No. 4, p. 386.

    Google Scholar 

  7. J. Toraño, S. Torno, M. Menéndez, and M. Gent, Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behaviour, Tunnelling Underground Space Technol., 26(2011), No. 1, p. 201.

    Article  Google Scholar 

  8. H.T. Wang, D.M. Wang, W.X. Ren, X.X. Lu, F.W. Han, and Y.K. Zhang, Application of foam to suppress rock dust in a large cross-section rock roadway driven with roadheader, Adv. Powder Technol., 24(2013), No. 1, p. 257.

    Article  CAS  Google Scholar 

  9. H.T. Wang, D.M. Wang, Y. Tang, B.T. Qin, and H.H. Xin, Experimental investigation of the performance of a novel foam generator for dust suppression in underground coal mines, Adv. Powder Technol., 25(2014), No. 3, p. 1053.

    Article  CAS  Google Scholar 

  10. X.X. Lu, D.M. Wang, C.H. Xu, C.B. Zhu, and W. Shen, Experimental investigation and field application of foam used for suppressing roadheader cutting hard rock in underground tunneling, Tunnelling Underground Space Technol., 49(2015), p. 1.

    Article  Google Scholar 

  11. S.P. Ma and Z.M. Kou, Study on mechanism of reducing dust by spray, J. China Coal Soc., 30(2005), No. 3, p. 297.

    Google Scholar 

  12. E.A. Almuhanna, R.G. Maghirang, J.P. Murphy, and L.E. Erickson, Effectiveness of electrostatically charged water spray in reducing dust concentration in enclosed spaces, Trans. ASABE, 51(2008), No. 1, p. 279.

    Article  Google Scholar 

  13. J. Yang., X.K. Wu, J.G. Gao, and G.P. Li, Surface characteristics and wetting mechanism of respirable coal dust, Min. Sci. Technol., 20(2010), No. 3, p. 365.

    CAS  Google Scholar 

  14. L.Z. Jin, J.M. Zhu, Z.G. Ren, and W. Wei, Research on an antifreezing dust depressor used to the road in open-pit mine, J. Univ. Sci. Technol. Beijing, 26(2004), No. 1, p. 4.

    CAS  Google Scholar 

  15. L.Z. Jin, J.X. Yang, and S.N. Ou, Experimental study of wetting chemical dust-depressor, J. Saf. Environ., 7(2007), No. 6, p. 109.

    CAS  Google Scholar 

  16. H.H. Tang, L.H. Zhao, W. Sun, Y.H. Hu, and H.S. Han, Surface characteristics and wettability enhancement of respirable sintering dust by nonionic surfactant, Colloids Surf. A, 509(2016), p. 323.

    Article  CAS  Google Scholar 

  17. X.F. Liu and B.S. Nie, Fractal characteristics of coal samples utilizing image analysis and gas adsorption, Fuel, 182(2016), p. 314.

    Article  CAS  Google Scholar 

  18. X.F. Liu, D.Z. Song, X.Q. He, Z.P. Wang, M.R. Zeng, and L.K. Wang, Quantitative analysis of coal nanopore characteristics using atomic force microscopy, Powder Technol., 346(2019), p. 332.

    Article  CAS  Google Scholar 

  19. X.Q. He, X.F. Liu, D.Z. Song, and B.S. Nie, Effect of microstructure on electrical property of coal surface, Appl. Surf. Sci., 483(2019), p. 713.

    Article  CAS  Google Scholar 

  20. X.F. Liu, D.Z. Song, X.Q. He, B.S. Nie, and L.K. Wang, Insight into the macromolecular structural differences between hard coal and deformed soft coal, Fuel, 245(2019), p. 188.

    Article  CAS  Google Scholar 

  21. X.F. Liu, D.Z. Song, X.Q. He, Z.P. Wang, M.R. Zeng, and K. Deng, Nanopore structure of deep-burial coals explored by AFM, Fuel, 246(2019), p. 9.

    Article  CAS  Google Scholar 

  22. V.K. Kollipara, Y.P. Chugh, and K. Mondal, Physical, mineralogical and wetting characteristics of dusts from Interior Basin coal mines, Int. J. Coal Geol., 127(2014), p. 75.

    Article  CAS  Google Scholar 

  23. C.H. Xu, D.M. Wang, H.T. Wang, H.H. Xin, L.Y. Ma, X.L. Zhu, Y. Zhang, and Q.G. Wang, Effects of chemical properties of coal dust on its wettability, Powder Technol., 318(2017), p. 33.

    Article  CAS  Google Scholar 

  24. H.T. Wang, L. Zhang, D.M. Wang, and X.X. He, Experimental investigation on the wettability of respirable coal dust based on infrared spectroscopy and contact angle analysis, Adv. Powder Technol., 28(2017), No. 12, p. 3130.

    Article  CAS  Google Scholar 

  25. G. Zhou, C.C. Xu, W.M. Cheng, Q. Zhang, and W. Nie, Effects of oxygen element and oxygen-containing functional groups on surface wettability of coal dust with various metamorphic degrees based on XPS experiment, J. Anal. Methods Chem., 2015(2015), art. No. 467242.

  26. S.S. Lu, H.F. Liu, X.L. Guo, X. Liu, and X. Gong, Determination method of particle size and distribution of coal by laser size analyzer, China Powder Sci. Technol., 16(2010), No. 4, p. 5.

    Google Scholar 

  27. Å. Gustafsson, A.M. Krais, A. Gorzsás, T. Lundh, and P. Gerde, Isolation and characterization of a respirable particle fraction from residential house-dust, Environ. Res., 161(2018), p. 284.

    Article  CAS  Google Scholar 

  28. Z.G. Cao, G. Yu, Y.S. Chen, C. Liu, K. Liu, T.T. Zhang, B. Wang, S.B. Deng, and J. Huang, Mechanisms influencing the BFR distribution patterns in office dust and implications for estimating human exposure, J. Hazard. Mater., 252(2013), p. 11.

    Article  Google Scholar 

  29. C.C. Negrila, C. Logofatu, R.V. Ghita, C. Cotirlan, F. Ungureanu, A.S. Manea, and M.F. Lazarescu, Angle-resolved XPS structural investigation of GaAs surfaces, J. Cryst. Growth, 310(2008), No. 7–9, p. 1576.

    Article  CAS  Google Scholar 

  30. T. Takahagi and A. Ishitani, XPS studies by use of the digital difference spectrum technique of functional groups on the surface of carbon fiber, Carbon, 22(1984), No. 1, p. 43.

    Article  CAS  Google Scholar 

  31. Y. Taki and O. Takai, XPS structural characterization of hydrogenated amorphous carbon thin films prepared by shielded arc ion plating, Thin Solid Films, 316(1998), No. 1–2, p. 45.

    Article  CAS  Google Scholar 

  32. M. Devillers, O. Dupuis, A. Janosi, and J.P. Soumillion, Coordination compounds as precursors for laser deposition of nickel-based conducting films, Appl. Surf. Sci., 81(1994), No. 1, p. 83.

    Article  CAS  Google Scholar 

  33. J.L. Jordan, C.A. Kovac, J.F. Morar, and R.A. Pollak, High-resolution photoemission study of the interfacial reaction of Cr with polyimide and model polymers, Phys. Rev. B, 36(1987), No. 3, p. 1369.

    Article  CAS  Google Scholar 

  34. E.Z. Kurmaev, V.V. Fedorenko, V.R. Galakhov, S. Bartkowski, S. Uhlenbrock, M. Neumann, P.R. Slater, C. Greaves, and Y. Miyazaki, Analysis of oxyanion (BO 3−3 , CO 2−3 , SO 2−4 , PO 3−4 , SeO 4−4 ) substitution in Y123 compounds studied by X-ray photoelectron spectroscopy, J. Supercond., 9(1996), No. 1, p. 97.

    Article  CAS  Google Scholar 

  35. A.B. Christie, J. Lee, I. Sutherland, and J.M. Walls, An XPS study of ion-induced compositional changes with group II and group IV compounds, Appl. Surf. Sci., 15(1983), No. 1–4, p. 224.

    Article  CAS  Google Scholar 

  36. E. Paparazzo, XPS and auger spectroscopy studies on mixtures of the oxides SiO2, Al2O3, Fe2O3 and Cr2O3, J. Electron Spectrosc. Relat. Phenom., 43(1987), No. 2, p. 97.

    Article  CAS  Google Scholar 

  37. M.I. Sosulnikov and Y.A. Teterin, X-ray photoelectron study of calcium, strontium, barium and their oxides, Dokl. Akad. Nauk SSSR, 317(1991), No. 2, p. 418.

    CAS  Google Scholar 

  38. D. Sprenger, H. Bach, W. Meisel, and P. Gütlich, XPS study of leached glass surfaces, J. Non-Cryst. Solids, 126(1990), No. 1–2, p. 111.

    Article  CAS  Google Scholar 

  39. L.P. Buchwalter and C. Czornyj, Poly(methyl methacrylate) degradation during x-ray photoelectron spectroscopy analysis, J. Vac. Sci. Technol. A, 8(1990), No. 2, p. 781.

    Article  CAS  Google Scholar 

  40. D. Briggs and G. Beamson, Primary and secondary oxygen-induced C1s binding energy shifts in X-ray photoelectron spectroscopy of polymers, Anal. Chem., 64(1992), No. 15, p. 1729.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (No. SQ2017YFSF060069) and the National Natural Science Foundation of China (No. 51574017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-zhe Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Jg., Jin, Lz., Wang, Jy. et al. Micromorphology and physicochemical properties of hydrophobic blasting dust in iron mines. Int J Miner Metall Mater 26, 665–672 (2019). https://doi.org/10.1007/s12613-019-1793-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1793-x

Keywords

Navigation