Skip to main content
Log in

Fine-tuning the ductile-brittle transition temperature of Mg2Si intermetallic compound via Al doping

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Brittleness is a dominant issue that restricts potential applications of Mg2Si intermetallic compounds (IMC). In this paper, guided by first-principles calculations, we found that Al doping will enhance the ductility of Mg2Si. The underlying mechanism is that Al doping could reduce the electronic exchange effect between Mg and Si atoms, and increase the volume module/shear modulus ratio, both of which are beneficial to the deformation capability of Mg2Si. Experimental investigations were then carried out to verify the calculation results with Al doping contents ranging from Al-free to 10wt%. Results showed that the obtained ductile-brittle transition temperature of the Mg2Si-Al alloy decreased and the corresponding ductility increased. Specifically, the ductile-brittle transition temperature could be reduced by about 100°C. When the content of Al reached 6wt%, α-Al phase started to precipitate, and the ductile-brittle transition temperature of the alloy no longer decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.W. Zhang, Z. Li, and H.B. Huang, New Mg2Si based alloy for automobile engine cylinder liner, J. Wuhan Univ. Technol. - Mater. Sci. Ed., 26(2011), No. 4, p. 797.

    Article  Google Scholar 

  2. B.L. Mordike and T. Ebert, Magnesium: Properties—applications—potential, Mater. Sci. Eng. A, 302(2001), No. 1, p. 37.

    Article  Google Scholar 

  3. M. Riffel and J. Schilz, Mechanical alloying of Mg2Si, Scripta Metall. Mater, 32(1995), No. 12, p. 1951.

    Article  Google Scholar 

  4. M. Yoshinaga, T. Iida, M. Noda, T. Endo, and Y. Takanashi, Bulk crystal growth of Mg2Si by the vertical Bridgman method, Thin Solid Films, 461(2004), No. 1, p. 86.

    Article  Google Scholar 

  5. H. Tatsuoka, N. Takagi, S. Okaya, Y. Sato, T. Inaba, T. Ohishi, A. Yamamoto, T. Matsuyama, and H. Kuwabara, Microstructures of semiconducting silicide layers grown by novel growth techniques, Thin Solid Films, 461(2004), No. 1, p. 57.

    Article  Google Scholar 

  6. K.K.A. Kumar, A. Viswanath, U.T.S. Pillai, B.C. Pai, and M. Chakraborty, Changes in solidification morphology of Mg-Si alloys by Ca additions, Trans. Indian Inst. Met., 65(2012), No. 6, p. 695.

    Article  Google Scholar 

  7. S. Battiston, S. Fiameni, M. Saleemi, S. Boldrini, A. Famengo, F. Agresti, M. Stingaciu, M.S. Toprak, M. Fabrizio, and S. Barison, Synthesis and characterization of Al-doped Mg2Si thermoelectric materials, J. Electron. Mater., 42(2013), No. 7, p. 1956.

    Article  Google Scholar 

  8. G.H. Li, H.S. Gill, and R.A. Varin, Magnesium silicide intermetallic alloys, Metall. Trans. A, 24(1993), No. 11, p. 2383.

    Article  Google Scholar 

  9. Y.L. Yue, Y.S. Gong, H.T. Wu, C.B. Wang, and L.M. Zhang, Fabrication and mechanical properties of TiC/TiAl composites, J. Wuhan Univ. Technol. - Mater. Sci. Ed., 19(2004), No. 1, p. 1.

    Article  Google Scholar 

  10. X.H. Qu, B.Y. Huang, and C.M. Lei, Room temperature brittleness and improvement of TiAl orderd alloy, Rare Met., 17(1993), No. 4, p. 295.

    Google Scholar 

  11. S.Q. Chen, X.H. Qu, C.M. Lei, and B.Y. Huang, Room temperature mechanical properties of ordered TiAl+La alloys, Acta Metall. Sin., 30(1994), No. 1, p. 20.

    Google Scholar 

  12. K. Kaur and R. Kumar, Electronic and thermoelectric properties of Al doped Mg2Si material: DFT study, Mater. Today: Proc., 3(2016), No. 6, p. 1785.

    Google Scholar 

  13. N. Hirayama, T. Iida, H. Funashima, S. Morioka, M. Sakamoto, K. Nishio, Y. Kogo, Y. Takanashi, and N. Hamada, First-principles study on structural and thermoelectric properties of Al- and Sb-doped Mg2Si, J. Electron. Mater., 44(2015), No. 6, p. 1656.

    Article  Google Scholar 

  14. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140(1965), No. 4A, p. A1133.

    Article  Google Scholar 

  15. G. Kresse and J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B, 48(1993), No. 17, p. 13115.

    Article  Google Scholar 

  16. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54(1996), No. 16, p. 11169.

    Article  Google Scholar 

  17. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865.

    Article  Google Scholar 

  18. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 48(1993), No. 7, p. 4978.

    Article  Google Scholar 

  19. P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50(1994), No. 24, p. 17953.

    Article  Google Scholar 

  20. H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188.

    Article  Google Scholar 

  21. J. Tani and H. Kido, First-principles and experimental studies of impurity doping into Mg2Si, Intermetallics, 16(2008), No. 3, p. 418.

    Article  Google Scholar 

  22. W. Xiong, X.Y. Qin, M.G. Kong, and C. Li, Synthesis and properties of bulk nanocrystalline Mg2Si through ball-milling and reactive hot-pressing, Trans. Nonferrous Met. Soc. China, 16(2006), No. 5, p. 987.

    Article  Google Scholar 

  23. C. Li, Y.P. Wu, H. Li, Y.Y. Wu, and X.F. Liu, Effect of Ni on eutectic structural evolution in hypereutectic Al-Mg2Si cast alloys, Mater. Sci. Eng. A, 528(2010), No. 2, p. 573.

    Article  Google Scholar 

  24. A. Viat, G. Guillonneau, S. Fouvry, G. Kermouche, S. Sao Joao, J. Wehrs, J. Michler, and J.F. Henne, Brittle to ductile transition of tribomaterial in relation to wear response at high temperatures, Wear, 392–393(2017), p. 60.

    Article  Google Scholar 

  25. S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London Edinburgh Dublin Philos. Mag. J. Sci., 45(1954), No. 367, p. 823.

    Article  Google Scholar 

  26. G.V. Sin’Ko and N. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp A1 crystals under pressure, J. Phys.: Condens. Matter, 14(2002), No. 29, p. 6989.

    Google Scholar 

  27. W. Voigt, Lehrbuch der Kristallphysik, Springer, Wiesbaden, 1966.

    Book  Google Scholar 

  28. A. Reuss, Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals, Z. Angew. Math. Mech., 9(1929), p. 49.

    Article  Google Scholar 

  29. R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A, 65(1952), No. 5, p. 349.

    Article  Google Scholar 

  30. R. Hill, Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys. Solids, 11(1963), No. 5, p. 357.

    Article  Google Scholar 

  31. R.D. Schmidt, E.D. Case, J. Giles, J.E. Ni, and T.P. Hogan, Room-temperature mechanical properties and slow crack growth behavior of Mg2Si thermoelectric materials, J. Electron. Mater., 41(2012), No. 6, p. 1210.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFB0700500) and the National Natural Science Foundation of China (No. 51574027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-you Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Zhao, Xp., Huang, Hy. et al. Fine-tuning the ductile-brittle transition temperature of Mg2Si intermetallic compound via Al doping. Int J Miner Metall Mater 26, 507–515 (2019). https://doi.org/10.1007/s12613-019-1758-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1758-0

Keywords

Navigation