Skip to main content
Log in

Biogenic amino acid methionine-based corrosion inhibitors of mild steel in acidic media

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

N, N-Diallyl methionine ethyl ester hydrochloride 5 underwent alternating copolymerization with SO2 via the Butler cyclopolymerization protocol in dimethyl sulfoxide (DMSO) to give water-soluble cycloterpolymer 6 with a ∼1:1 molar ratio of sulfide and sulfoxide groups as a result of oxygen transfer from DMSO. Half of the sulfide groups in 6, upon oxidation with H2O2, afforded polymer sulfoxide 7 and polymer sulfone 8. The solution properties of these polymers were determined via a viscometric technique. The thermal stability of these polymers was determined by thermogravimetric analysis. The inhibition efficiency obtained from gravimetric mass loss, potentiodynamic polarization, and electrochemical impedance spectroscopy techniques agreed well with each other. The corrosion efficiencies increase with increasing concentration of the polymers. At a polymer concentration of 175 μM, the maximum inhibition efficiency of copolymer compounds 6–8 was determined to be 92%, 97%, and 95%, respectively. The synthesized polymer compounds acted as mixed-type inhibitors. Polymer compound 7 adsorbed onto the metal surface via chemisorption and physisorption and obeyed Langmuir, Temkin, and Freundlich adsorption isotherms. Analyses by X-ray photoelectron spectroscopy and scanning electron microscopy-energy-dispersive X-ray spectroscopy indicated that the adsorbed polymers formed a thin film on the metal surface and prevented further corrosive attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Kiani, M.F. Mousavi, S. Ghasemi, M. Shamsipur, and S.H. Kazemi, Inhibitory effect of some amino acids on corrosion of Pb-Ca-Sn alloy in sulfuric acid solution, Corros. Sci., 50(2008), No. 4, p. 1035.

    Article  Google Scholar 

  2. V.S. Sastri, Corrosion Inhibitors: Principles and Applications, Wiley, New York, 1998.

    Google Scholar 

  3. R.W. Revie and H.H. Uhlig, Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, 4th Ed., Wiley-Interscience, New York, 2008.

    Book  Google Scholar 

  4. B.D.B. Tiu and R.C. Advincula, Polymeric corrosion inhibitors for the oil and gas industry: Design principles and mechanism, React. Funct. Polym., 95(2015), p. 25.

    Article  Google Scholar 

  5. S. Zor, F. Kandemirli, and M. Bingul, Inhibition effects of methionine and tyrosine on corrosion of iron in HCl solution: Electrochemical, FTIR, and quantum-chemical study, Prot. Met. Phys. Chem. Surf., 45(2009), No. 1, p. 46.

    Article  Google Scholar 

  6. P. Shanmugasundaram, T. Sumathi, G. Chandramohan, and G.N.K. Ramesh-Bapu, Corrosion inhibition study of is: 1062 grade A — low carbon steel in 1 M HCl by L-Methionine -weight loss, ICP-OES and SEM-EDX studies, Int. J. Curr. Res., 5(2013), No. 8, p. 2183.

    Google Scholar 

  7. E.E. Oguzie, Y. Li, and F.H. Wang, Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion, J. Colloid Interface Sci., 310(2007), No. 1, p. 90.

    Article  Google Scholar 

  8. B. Hammouti, A. Aouniti, M. Taleb, M. Brighli, and S. Kertit, L-Methionine methyl ester hydrochloride as a corrosion inhibitor of iron in acid chloride solution, Corrosion, 51(1995), No. 6, p. 411.

    Article  Google Scholar 

  9. K.F. Khaled, Corrosion control of copper in nitric acid solutions using some amino acids-A combined experimental and theoretical study, Corros. Sci., 52(2010), No. 10, p. 3225.

    Article  Google Scholar 

  10. M.A.J. Mazumder, H.A. Al-Muallem, S.A. Ali, and M.K. Estaitie, Cyclopolymer containing residues of methionine and synthesis and uses thereof, U.S. patent, No. US9556301B1, 2017.

  11. Y.N. Wang, C.F. Dong, D.W. Zhang, P.P. Ren, L. Li, and X.G. Li, Preparation and characterization of a chitosan-based low-pH-sensitive intelligent corrosion inhibitor, Int. J. Miner. Metall. Mater., 22(2015), No. 9, p. 998.

    Article  Google Scholar 

  12. R. Bacskai, A.H. Schroeder, and D.C. Young, Hydrocarbon-soluble alkylaniline/formaldehyde oligomers as corrosion inhibitors, J. Appl. Polym. Sci., 42(1991), p 2435.

    Article  Google Scholar 

  13. G.B. Butler, Cyclopolymerization and Cyclocopolymerization, CRC Press, Florida, 1992.

    Google Scholar 

  14. P.K. Singh, V.K. Singh, and M. Singh, Zwitterionic polyelectrolytes: A review, E-Polymers, 2007, No. 030, p. 1.

    Google Scholar 

  15. W. Jaeger, J. Bohrisch, and A. Laschewsky, Synthetic polymers with quaternary nitrogen atoms—Synthesis and structure of the most used type of cationic polyelectrolytes, Prog. Polym. Sci., 35(2010), No. 5, p. 511.

    Article  Google Scholar 

  16. G.B. Butler, Cyclopolymerization, J. Polym. Sci., Part A: Polym. Chem., 38(2000), No. 8, p. 3451.

    Article  Google Scholar 

  17. V.S. Saji, A review on recent patents in corrosion inhibitors, Recent Pat. Corros. Sci., 2(2010), p. 6.

    Article  Google Scholar 

  18. S.A. Ali and O.C.S. Al-Hamouz, Comparative solution properties of cyclocopolymers having cationic, anionic, zwitterionic and zwitterionic/anionic backbones of similar degree of polymerization, Polymer, 53(2012), No. 15, p. 3368.

    Article  Google Scholar 

  19. N.Y. Abu-Thabit, I.W. Kazi, H.A. Al-Muallem, and S.A. Ali, Phosphonobetaine/sulfur dioxide copolymer by Butler’s cyclopolymerization process, Eur. Polym. J., 47(2011), No. 5, p. 1113.

    Article  Google Scholar 

  20. S.A. Ali, Y. Umar, B.F. Abu-Sharkh, and H.A. Al-Muallem, Synthesis and comparative solution properties of single-, twin-, and triple-tailed associating ionic polymers based on diallylammonium salts, J. Polym. Sci., Part A: Polym. Chem., 44(2006), No. 19, p. 5480.

    Article  Google Scholar 

  21. H.A. Al-Muallem, M.A.J. Mazumder, M.K. Estaitie, and S.A. Ali, A novel cyclopolymer containing residues of essential amino acid methionine: Synthesis and application, Iran. Polym. J., 24(2015), No. 7, p. 541.

    Article  Google Scholar 

  22. G. Koch, J. Varney, N. Thompson, O. Moghissi, M. Gould, J. Payer, The NACE International Impact Study [2018-04-20], https://doi.org/impact.nace.org/.

  23. S.A. Ali, L.K.M.O. Goni, and M.A.J. Mazumder, Butler’s cyclopolymerizaton protocol in the synthesis of diallylamine salts/sulfur dioxide alternate polymers containing amino acid residues, J. Polym. Res., 24(2017), No. 11, p 184.

    Article  Google Scholar 

  24. S.Z. Duan and Y.L. Tao, Interface Chemistry, Higher Education Press, Beijing, 1990, p. 124.

    Google Scholar 

  25. M. Erbil, The determination of corrosion rates by analysis of AC impedance diagrams, Chim. Acta. Turc., 1(1988), No. 1, p. 59.

    Google Scholar 

  26. P.C. Okafor, X. Liu, and Y.G. Zheng, Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution, Corros. Sci., 51(2009), No. 4, p. 761.

    Article  Google Scholar 

  27. L. Larabi, Y. Harek, M. Traisnel, and A. Mansri, Synergistic influence of poly(4-vinylpyridine) and potassium iodide on inhibition of corrosion of mild steel in 1 M HCl, J. Appl. Electrochem., 34(2014), No. 8, p. 833.

    Article  Google Scholar 

  28. T. Arsian, F. Kandemirli, E.E. Ebenso, I. Love, and H. Alemu, Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium, Corros. Sci., 51(2009), No. 1, p. 35.

    Article  Google Scholar 

  29. G.Y. Elewady, I.A. El-Said, and A.S. Fouda, Anion surfactants as corrosion inhibitors for aluminium dissolution in HCl solutions, Int. J. Electrochem. Sci., 3(2008), No. 2, p. 177.

    Google Scholar 

  30. G.E. Badr, The role of some thiosemicarbozide derivatives as corrosion inhibitors for carbon steel in acidic media, Corros. Sci., 51(2009), No. 11, p. 2529.

    Article  Google Scholar 

  31. C.G. Dariva and A.F. Galio, Corrosion Inhibitors — Principles, Mechanisms and Applications, IntechOpen, UK, 2014.

    Google Scholar 

  32. L. Afia, R. Salghi, L. Bammou, E. Bazzi, B. Hammouti, L. Bazzi, and A. Bouyanzer, Anti-corrosive properties of argan oil on C38 steel in molar HCl solution, J. Saudi Chem. Soc., 18(2014), No. 1, p. 19.

    Article  Google Scholar 

  33. O. Olivares-Xometl, N.V. Likhanova, M.A. Dominguez-Aguilar, J.M. Hallen, L.S. Zamudio, and E. Arce, Surface analysis of inhibitor films formed by imidazolines and amides on mild steel in an acidic environment, Appl. Surf. Sci., 252(2006), No. 6, p. 2139.

    Article  Google Scholar 

  34. M. Tourabi, K. Nohair, M. Traisnel, C. Jama, and F. Bentiss, Electrochemical and XPS studies of the corrosion inhibition of carbon steel in hydrochloric acid pickling solutions by 3,5-bis(2-thienylmethyl)-4-amino-1,2,4-triazole, Corros. Sci., 75(2013), p. 123.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the research facilities provided by King Fahd University of Petroleum and Minerals (KFUPM) and the financial assistance of the Deanship of Scientific Research, KFUPM, Saudi Arabia through Internal project # IN131047.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Jafar Mazumder or S. A. Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goni, L.K.M.O., Mazumder, M.A.J., Ali, S.A. et al. Biogenic amino acid methionine-based corrosion inhibitors of mild steel in acidic media. Int J Miner Metall Mater 26, 467–482 (2019). https://doi.org/10.1007/s12613-019-1754-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1754-4

Keywords

Navigation