Skip to main content
Log in

Improving effect on forming quality and accuracy using a polyurethane board positioning/resetting the discrete steel pad in multi-point forming

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

To improve the quality of multi-point die forming, a new approach using discrete steel pads was proposed. The formability of three different multi-point die forming processes was analyzed through numerical simulation and experiments. Numerical simulation and experimental results showed that the use of discrete steel pads in the multi-point forming process can substantially improve the stress-strain state on the plate and suppress dimple, straight-edge, and wrinkle defects. This analysis verified that the use of discrete steel pads in a multi-point forming process can effectively improve the quality and accuracy with which sheet metal is formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.Z. Li, S.H. Li, G.Q. Li, Z. Liu, and Y.H. Liu, Numerical simulation on multi-point forming technique for sheet metal parts, J. Plast. Eng., 6(1999), No. 2, p. 37.

    Google Scholar 

  2. E.H. Qu, M.Z. Li, R. Li, M.Y. Cui, and J.L. Lin, Research on formability in multi-point forming with different elastic pads, Int. J. Adv. Manuf. Technol., 98(2018), No. 5–8, p. 1887.

    Google Scholar 

  3. Z.Y. Cai and M.Z. Li, Optimum path forming technique for sheet metal and its realization in multi-point forming, J. Mater. Process. Technol., 110(2001), No. 2, p. 136.

    Article  Google Scholar 

  4. X. Li, M.Z. Li, and Z.Y. Cai, Effect of elastic medium on the forming quality in multi-point forming process, J. Harbin Inst. Technol., 37(2005), No. 2, p. 194.

    Google Scholar 

  5. M.Z. Li, Z.Y. Cai, and X.J. Cui, Multi-point forming — a new flexible forming process for sheet metal, Metal. Form. Technol., 20(2002), No. 6, p. 5.

    Google Scholar 

  6. F.X. Tan, M.Z. Li, and Z.Y. Cai, Research on the process of multi-point forming for the customized titanium alloy cranial prosthesis, J. Mater. Process. Technol., 187–188(2007), p. 453.

    Article  Google Scholar 

  7. Q. Zhang, Z.R. Wang, and T.A. Dean, Multi-point sandwich forming of a spherical sector with tool-shape compensation, J. Mater. Process. Technol., 194(2007), No. 1–3, p. 74.

    Article  Google Scholar 

  8. B. Zareh-Desari, B. Davoodi, and A. Vedaei-Sabegh, Investigation of deep drawing concept of multi-point forming process in terms of prevalent defects, Int. J. Mater. Form., 10(2017), No. 2, p. 193.

    Article  Google Scholar 

  9. B. Beglarzadeh and B. Davoodi, Numerical simulation and experimental examination of forming defects in multi-point deep drawing process, Mechanika, 22(2016), No. 3, p. 182.

    Article  Google Scholar 

  10. Y.J. Liu, M.Z. Li, and F.F. Ju, Research on the process of flexible blank holder in multi-point forming for spherical surface parts, Int. J. Adv. Manuf. Technol., 89(2016), No. 5–8, p. 2315.

    Google Scholar 

  11. M. Abebe, K. Lee, and B.S. Kang, Surrogate-based multi-point forming process optimization for dimpling and wrinkling reduction, Int. J. Adv. Manuf. Technol., 85(2016), No. 1–4, p. 391.

    Article  Google Scholar 

  12. M. Abosaf, K. Essa, A. Alghawail, A. Tolipov, S.Z. Su, and D. Pham, Optimisation of multi-point forming process parameters, Int. J. Adv. Manuf. Technol., 92(2017), No. 5–8, p. 1849.

    Article  Google Scholar 

  13. E.H. Qu, M.Z. Li, R. Li, L. Zhao, and Z. Yi, Inhibitory effects of a flexible steel pad on wrinkling in multi-point die forming, Int. J. Adv. Manuf. Technol., 95(2017), No. 5–8, p. 2413.

    Google Scholar 

  14. J. Xing, M.Z. Li, Y.Y. Cheng, B.L. Wang, Z. Yang, and Y. Wang, Effect of the arrangement of the punch units in multi-point stretch forming process, Int. J. Adv. Manuf. Technol., 86(2016) No. 5–8, p. 2309.

    Article  Google Scholar 

  15. Z.W. Liu, M.Z. Li, and Q.G. Han, Multi-point forming with wrinkle resistance function and its forming accuracy, J. Mech. Eng., 48(2012), No. 12, p. 56.

    Article  Google Scholar 

  16. Y. Li, W.Z. Fu, M.Z. Li, X.D. Liu, S. Sun, and Z. Yi, Influence of deformation path on the forming effect in a multistep flexible rolling process, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1173.

    Article  Google Scholar 

  17. Y. Jing, H.M. Zhang, H. Wu, L.J. Li, H.B. Jia, and Z.Y. Jiang, Effects of microrolling parameters on the microstructure and deformation behavior of pure copper, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-zhe Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Eh., Li, Mz. & Li, R. Improving effect on forming quality and accuracy using a polyurethane board positioning/resetting the discrete steel pad in multi-point forming. Int J Miner Metall Mater 26, 447–459 (2019). https://doi.org/10.1007/s12613-019-1752-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1752-6

Keywords

Navigation