Skip to main content
Log in

Azo dye degradation behavior of AlFeMnTiM (M = Cr, Co, Ni) high-entropy alloys

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Because of the potential carcinogenic effects and difficult degradation of azo dyes, their degradation has been a longstanding problem. The degradation of azo dye Direct Blue 6 (DB6) using ball-milled (BM) high-entropy alloy (HEA) powders was characterized in this work. Newly designed AlFeMnTiM (M = Cr, Co, Ni) HEAs synthesized by mechanical alloying (MA) showed excellent performance in the degradation of azo dye DB6. The degradation efficiency of AlFeMnTiCr is approximately 19 times greater than that of the widely used commercial Fe-Si-B amorphous alloy ribbons and more than 100 times greater than that of the widely used commercial zero-valent iron (ZVI) powders. The galvanic-cell effect and the unique crystal structure are responsible for the good degradation performance of the BM HEAs. This study indicates that BM HEAs are attractive, valuable, and promising environmental catalysts for wastewater contaminated by azo dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.N. Liu, G.T. Li, J.H. Qu, and H.J. Liu, Degradation of azo dye Acid Orange 7 in water by Fe0/granular activated carbon system in the presence of ultrasound, J. Hazard. Mater., 144(2007), No. 1–2, p. 180.

    Article  CAS  Google Scholar 

  2. B. Chen, X.K. Wang, C. Wang, W.Q. Jiang, and S.P. Li, Degradation of azo dye direct sky blue 5B by sonication combined with zero-valent iron, Ultrason. Sonochem., 18(2011), No. 5, p. 1091.

    Article  CAS  Google Scholar 

  3. J.H. Ramirez, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, C. Moreno-Castilla, C.A. Costa, and L.M. Madeira, Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe, Appl. Catal. B, 75(2007), No. 3–4, p. 312.

    Article  CAS  Google Scholar 

  4. Y.C. Dong, L.C. He, and M. Yang, Solar degradation of two azo dyes by photocatalysis using Fe(III)-oxalate complexes/ H2O2 under different weather conditions, Dyes Pigm., 77(2008), No. 2, p. 343.

    Article  CAS  Google Scholar 

  5. Z.Y. Lv, X.J. Liu, B. Jia, H. Wang, Y. Wu, and Z.P. Lu, Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions, Sci. Rep., 6(2016), No. 4, p. 34213.

    Article  CAS  Google Scholar 

  6. Y.N. Liu, H. Tian, and A.H. Si, Gliding arc discharge for decolorization and biodegradability of azo dyes and printing and dyeing wastewater, Plasma Chem. Plasma Process., 32(2012), No. 3, p. 597.

    Article  CAS  Google Scholar 

  7. H.L. Lv, H.Y. Zhao, T.C. Cao, L. Qian, Y.B. Wang, and G.H. Zhao, Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework, J. Mol. Catal. A: Chem., 400(2015), No. 3, p. 81.

    Article  CAS  Google Scholar 

  8. R. Patel and S. Suresh, Decolourization of azo dyes using magnesium-palladium system, J. Hazard. Mater., 137(2006), No. 3, p. 1729.

    Article  CAS  Google Scholar 

  9. S.H. Chang, K.S. Wang, S.J. Chao, T.H. Peng, and L.C. Huang, Degradation of azo and anthraquinone dyes by a low-cost Fe0/air process, J. Hazard. Mater., 166(2009), No. 2–3, p. 1127.

    Article  CAS  Google Scholar 

  10. J.M. Kwon, Y.H. Kim, B.K. Song, S.H. Yeom, B.S. Kim, and J.B. Im, Novel immobilization of titanium dioxide (TiO2) on the fluidizing carrier and its application to the degradation of azo-dye, J. Hazard. Mater., 134(2006), No. 1–3, p. 230.

    Article  CAS  Google Scholar 

  11. E.S. Aazam and R.M. Mohamed, Environmental remediation of direct blue dye solutions by photocatalytic oxidation with cuprous oxide, J. Alloys Compd., 577(2013), No. 45, p. 550.

    Article  CAS  Google Scholar 

  12. P. Singla, M. Sharma, O.P. Pandey, and K. Singh, Photocatalytic degradation of azo dyes using Zn-doped and undoped TiO2 nanoparticles, Appl. Phys. A, 116(2014), No. 1, p. 371.

    Article  CAS  Google Scholar 

  13. N. Divya, A. Bansal, and A.K. Jana, Photocatalytic degradation of azo dye Orange II in aqueous solutions using copper-impregnated titania, Int. J. Environ. Sci. Technol., 10(2013), No. 6, p. 1265.

    Article  CAS  Google Scholar 

  14. A. Pandey, P. Singh, and L. Iyengar, Bacterial decolorization and degradation of azo dyes, Int. Biodeterior. Biodegrad., 59(2007), No. 2, p. 73.

    Article  CAS  Google Scholar 

  15. A.D. Bokare, R.C. Chikate, C.V. Rode, and K.M. Paknikar, Effect of surface chemistry of Fe-Ni nanoparticles on mechanistic pathways of azo dye degradation, Environ. Sci. Technol., 41(2007), No. 21, p. 7437.

    Article  CAS  Google Scholar 

  16. X. Liu, L. Huang, D.S. Zhang, T.T. Yan, J.P. Zhang, and L.Y. Shi, Light driven fabrication of highly dispersed Mn-Co/RGO and the synergistic effect in catalytic degradation of methylene blue, Mater. Des., 140(2018), p. 286.

    Article  CAS  Google Scholar 

  17. M. Amir, U. Kurtan, and A. Baykal, Synthesis and application of magnetically recyclable nanocatalyst Fe3O4@Nico@Cu in the reduction of azo dyes, Chin. J. Catal., 36(2015), No. 8, p. 1280.

    Article  CAS  Google Scholar 

  18. Y. Liu, X. Chen, J. Li, and C. Burda, Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts, Chemosphere, 61(2005), No. 1, p. 11.

    Article  CAS  Google Scholar 

  19. C.C. Amorim, M.M.D. Leão, R.F.P.M. Moreira, J.D. Fabris, and A.B. Henriques, Performance of blast furnace waste for azo dye degradation through photo-Fenton-like processes, Chem. Eng. J., 224(2013), No. 1, p. 59.

    Article  CAS  Google Scholar 

  20. S.D. Kalme, G.K. Parshetti, S.U. Jadhav, and S.P. Govindwar, Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112, Bioresour. Technol., 98(2007), No. 7, p. 1405.

    Article  CAS  Google Scholar 

  21. N. Ertugay and F.N. Acar, Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study, Arabian J. Chem., 10(2017), Suppl. 1, p. S1158.

    Article  CAS  Google Scholar 

  22. I.K. Konstantinou and T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review, Appl. Catal. B, 49(2004), No. 1, p. 3.

    Article  CAS  Google Scholar 

  23. Y. Tang, Y. Shao, N. Chen, X. Liu, S.Q. Chen, and K.F. Yao, Insight into the high reactivity of commercial Fe-Si-B amorphous zero-valent iron in degrading azo dye solutions, RSC Adv., 5(2015), No. 43, p. 34032.

    Article  CAS  Google Scholar 

  24. R.V. Solomon, I.S. Lydia, J.P. Merlin, and P. Venuvanalingam, Enhanced photocatalytic degradation of azo dyes using nano Fe3O4, J. Iran. Chem. Soc., 9(2012), No. 2, p. 101.

    Article  CAS  Google Scholar 

  25. W. Li, S.K. Guan, J. Chen, J.H. Hu, S. Chen, L.G. Wang, and S.J. Zhu, Preparation and in vitro degradation of the composite coating with high adhesion strength on biodegradable Mg-Zn-Ca alloy, Mater. Charact., 62(2011), No. 12, p. 1158.

    Article  CAS  Google Scholar 

  26. J.Q. Wang, Y.H. Liu, M.W. Chen, D.V. Louzguine-Luzgin, A. Inoue, and J.H. Perepezko, Excellent capability in degrading azo dyes by MgZn-based metallic glass powders, Sci. Rep., 2(2012), No. 5, art. No. 418.

    Article  CAS  Google Scholar 

  27. X.D. Qin, Z.W. Zhu, G. Liu, H.M. Fu, H.W. Zhang, A.M. Wang, H. Li, and H.F. Zhang, Ultrafast degradation of azo dyes catalyzed by cobalt-based metallic glass, Sci. Rep., 5(2015), No. 2, art. No. 18226.

    CAS  Google Scholar 

  28. Y.F. Zhao, J.J. Si, J.G. Song, Q. Yang, and X.D. Hui, Synthesis of Mg-Zn-Ca metallic glasses by gas-atomization and their excellent capability in degrading azo dyes, Mater. Sci. Eng. B, 181(2014), No. 181, p. 46.

    Article  CAS  Google Scholar 

  29. H.Y. Shu, M.C. Chang, C.C. Chen, and P.E. Chen, Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution, J. Hazard. Mater., 184(2010), No. 1–3, p. 499.

    Article  CAS  Google Scholar 

  30. Y. Keum and Q.X. Li, Reduction of nitroaromatic pesticides with zero-valent iron, Chemosphere, 54(2004), No. 3, p. 255.

    Article  CAS  Google Scholar 

  31. C.F. Lee and T.T. Shun, Effect of Fe content on microstructure and mechanical properties of Al0.5 CoCrFexNiTi0.5 high-entropy alloys, Mater. Charact., 114(2016), No. 2, p. 179.

    Article  CAS  Google Scholar 

  32. L.X. Yin, D.D. Zhang, J. Wang, J.F. Huang, X.G. Kong, J.M. Fang, and F. Zhang, Improving sunlight-driven photocatalytic activity of ZnO nanostructures upon decoration with Fe(III) cocatalyst, Mater. Charact., 127(2017), No. 3, p. 179.

    Article  CAS  Google Scholar 

  33. R.R. Eleti, V. Raju, M. Veerasham, S.R. Reddy, and P.P. Bhattacharjee, Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy, Mater. Charact., 136(2018), No. 2, p. 286.

    Article  CAS  Google Scholar 

  34. H.T. Zhou, Y.J. Su, N. Liu, F.T. Kong, X.P. Wang, X. Zhang, and Y.Y. Chen, Modification of microstructure and properties of Ti-47Al-2Cr-4Nb-0.3W alloys fabricated by SPS with trace multilayer graphene addition, Mater Charact., 138(2018), No. 1, p. 1.

    Article  CAS  Google Scholar 

  35. Z.B. Cai, G. Jin, X.F. Cui, Z. Liu, W. Zheng, Y. Li, and L.Q. Wang, Synthesis and microstructure characterization of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying, Mater. Charact., 120(2016), No. 3, p. 229.

    Article  CAS  Google Scholar 

  36. O. Maulik and V. Kumar, Synthesis of AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying, Mater. Charact., 110(2015), No. 2, p. 116.

    Article  CAS  Google Scholar 

  37. H. Kusic, N. Koprivanac, and L. Srsan, Azo dye degradation using Fenton type processes assisted by UV irradiation: A kinetic study, J. Photochem. Photobiol. A, 181(2006), No. 2–3, p. 195.

    Article  CAS  Google Scholar 

  38. C.Q. Zhang, Z.W. Zhu, H.F. Zhang, and Z.Q. Hu, Rapid reductive degradation of azo dyes by a unique structure of amorphous alloys, Chin. Sci. Bull., 56(2011), No. 36, p. 3988.

    Article  CAS  Google Scholar 

  39. C.Q. Zhang, H.F. Zhang, M.Q. Lv, and Z.Q. Hu, Decolorization of azo dye solution by Fe-Mo-Si-B amorphous alloy, J. Non-Cryst Solids, 356(2010), No. 33–34, p. 1703.

    Article  CAS  Google Scholar 

  40. J. Wang, Y. Liu, M. Chen, G. Xie, D.V. Louzguine-Luzgin, A. Inoue, and J.H. Perepezko, Rapid degradation of azo dye by Fe-based metallic glass powder, Adv. Funct. Mater., 22(2012), No. 12, p. 2567.

    Article  CAS  Google Scholar 

  41. J. Fan, Y. Guo, J. Wang, and M. Fan, Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles, J. Hazard. Mater., 166(2009), No. 2–3, p. 904.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51671056), Jiangsu Key Laboratory for Advanced Metallic Materials (No. BM2007204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Sk., Pan, Y., Wang, N. et al. Azo dye degradation behavior of AlFeMnTiM (M = Cr, Co, Ni) high-entropy alloys. Int J Miner Metall Mater 26, 124–132 (2019). https://doi.org/10.1007/s12613-019-1716-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1716-x

Keywords

Navigation