Skip to main content
Log in

Effect of retained austenite and nonmetallic inclusions on the thermal/electrical properties and resistance spot welding nuggets of Si-containing TRIP steels

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Five advanced high-strength transformation-induced plasticity (TRIP) steels with different chemical compositions were studied to correlate the retained austenite and nonmetallic inclusion content with their physical properties and the characteristics of the resistance spot welding nuggets. Electrical and thermal properties and equilibrium phases of TRIP steels were predicted using the JMatPro© software. Retained austenite and nonmetallic inclusions were quantified by X-ray diffraction and saturation magnetization techniques. The nonmetallic inclusions were characterized by scanning electron microscopy. The results show that the contents of Si, C, Al, and Mn in TRIP steels increase both the retained austenite and the nonmetallic inclusion contents. We found that nonmetallic inclusions affect the thermal and electrical properties of the TRIP steels and that the differences between these properties tend to result in different cooling rates during the welding process. The results are discussed in terms of the electrical and thermal properties determined from the chemical composition and their impact on the resistance spot welding nuggets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Grajcar, M. Rózanski, M. Kaminska, and B. Grzegorczyk, Study on non-metallic inclusions in laser-welded TRIP-aided Nb-microalloyed steel, Arch. Metall. Mater., 59(2014), No. 3, p. 1163.

    Article  Google Scholar 

  2. L.I. Lin, B.C. De Cooman, R.D. Liu, J. Vleugels, M. Zhang, and S.H. Wen, Design of TRIP steel with high welding and galvanizing performance in light of thermodynamics and kinetics, J. Iron Steel Res. Int., 14(2007), No. 6, p. 37.

    Article  Google Scholar 

  3. A. Mohamadizadeh, A. Zarei-Hanzaki, S. Mehtonen, D. Porter, and M. Moallemi, Effect of intercritical thermomechanical processing on austenite retention and mechanical properties in a multiphase TRIP-assisted steel, Metall. Mater. Trans. A, 47(2016), No. 1, p. 436.

    Article  Google Scholar 

  4. H.L. Yi, Review on d-transformation-induced plasticity (TRIP) steels with low density: the concept and current progress, JOM, 66(2014), No. 9, p. 1759.

    Article  Google Scholar 

  5. M. Pouranvari and S.P.H. Marashi, Critical review of automotive steels spot welding: process, structure and properties, Sci. Technol. Weld. Joining, 18(2013), No. 5, p. 361.

    Article  Google Scholar 

  6. K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, and P. Veyssière, Encyclopedia of Materials: Science and Technology, Elsevier, Michigan, 2001, p. 4807.

    Google Scholar 

  7. B.D. Cullity and C.D. Graham, Introduction to Magnetic Materials, 2nd ed., Wiley-IEEE Press, New Jersey, 2008.

    Book  Google Scholar 

  8. M. Amirthalingam, M.J.M. Hermans, L. Zhao, and I.M. Richardson, Quantitative analysis of microstructural constituents in welded transformation-induced-plasticity steels, Metall. Mater. Trans. A, 41(2009), No. 431, p. 430.

    Google Scholar 

  9. M. Amirthalingam, M. Hermans, and I.M. Richardson, Microstructural development during welding of silicon and aluminum based transformation induced plasticity steels?inclusion and elemental partitioning analysis, Metall. Mater. Trans. A, 40(2009), No. 901, p. 901.

    Article  Google Scholar 

  10. E. Girault, P. Jacques, Ph. Harlet, K. Mols, J. Van Humbeeck, E. Aernoudt, and F. Delannay, Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels, Mater. Charact., 40(1998), No. 2, p. 111.

    Article  Google Scholar 

  11. L. Zhao, N.H. van Dijk, E. Brück, J. Sietsma, and S. van der Zwaag, Magnetic and X-ray diffraction measurements for the determination of retained austenite in TRIP steels, Mater. Sci. Eng. A, 313(2000), No. 1–2, p. 145.

    Google Scholar 

  12. M. Soliman, B. Weidenfeller, and H. Palkowski, Metallurgical phenomena during processing of cold rolled trip steel, Steel Res. Int., 80(2009), No. 1, p. 57.

    Google Scholar 

  13. O. Matsumura, Y. Sakuma, and H. Takechi, Enhancement of elongation by retained austenite in intercritical annealed 0.4C-1.5Si-0.8Mn steel, Trans. Iron Steel Inst. Jpn., 27(1987), No. 7, p. 570.

    Article  Google Scholar 

  14. G. Azizi, H. Mirzadeh, and M.H. Parsa, Dependency of deformation behavior of retained austenite in TRIP steels on microstructural and chemical homogeneity, Acta Metall. Sin. Engl. Lett., 28(2015), No. 10, p. 1272.

    Article  Google Scholar 

  15. H.X. Yin, A.M. Zhao, Z.Z. Zhao, X. Li, S.J. Li, H.J. Hu, and W.G. Xia, Influence of original microstructure on the transformation behavior and mechanical properties of ultra-high-strength TRIP-aided steel, Int. J. Miner. Metall. Mater., 22(2015), No. 3, p. 262.

    Article  Google Scholar 

  16. Z. Li, D. Wu, and J.X. Liu, Effects of austempering on the mechanical properties of the hot rolled Si-Mn TRIP steels, J. Wuhan Univ. Technol., 21(2006), No. 3, p. 21.

    Article  Google Scholar 

  17. I. Tsukatani, S. Hashimoto, and T. Inoue, Effect of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite, ISIJ Int., 31(1991), No. 9, p. 992.

    Article  Google Scholar 

  18. J.R. Green and D. Margerison, Statistical Treatment of Experimental Data, P.T. Tomkins, eds., Elsevier, Amsterdam, 1978.

  19. A.J. DeArdo, C.I. Garcia, K. Cho, and M. Hua, New method of characterizing and quantifying complex microstructures in steels, Mater. Manuf. Processes, 25(2010), No. 1–3, p. 33.

    Article  Google Scholar 

  20. S. Han, H. Seong, Y. Ahn, C.I. Garcia, A.J. DeArdo, and I. Kim, Effect of alloying elements and coiling temperature on the recrystallization behavior and the bainitic transformation in TRIP steels, Met. Mater. Int., 15(2009), No. 4, p. 521.

    Article  Google Scholar 

  21. M. Radu, J. Valy, A.F. Gourgues, F. Le Strat, and A. Pineau, Continuous magnetic method for quantitative monitoring of martensitic transformation in steels containing metastable austenite, Scripta Mater., 52(2005), No. 6, p. 525.

    Article  Google Scholar 

  22. M.B. Karimi, H. Arabi, A. Khosravani, and J. Samei, Effect of rolling strain on transformation induced plasticity of austenite to martensite in high-alloy austenitic steel, J. Mater. Process. Technol., 203(2008), No. 1–3, p. 349.

    Article  Google Scholar 

  23. A.A. Shatsov and M.G. Latypov, Role of nickel and carbon in concentration-inhomogeneous trip steels, Met. Sci. Heat Treat., 43(2001), No. 5–6, p. 248.

    Article  Google Scholar 

  24. P.J. Jacques, S. Allain, O. Bouaziz, A. De, A.F. Gourgues, B.M. Hance, Y. Houbaert, J. Huang, A. Iza-Mendia, S.E. Kruger, M. Radu, L. Samek, J. Speer, L. Zhao, and S. van der Zwaag, On the measurement of retained austenite in multiphase TRIP steels?results of blind round robin test involving six different technique, Mater. Sci. Technol., 25(2009), No. 5, p. 567.

    Article  Google Scholar 

  25. S. Berveiller, K. Inal, R. Kubler, A. Eberhardt, and E. Patoor, Experimental approach of the martensitic transformation in shape-memory alloys and TRIP steels, J. Phys. IV, 115(2004), p. 261.

    Google Scholar 

  26. M. Gomez, C.I. Garcia, and A.J. Deardo, The role of new ferrite on retained austenite stabilization in Al-TRIP steels, ISIJ Int., 50(2010), No. 1, p. 139.

    Article  Google Scholar 

  27. D. Jandová, R. Divišová, L. Skálová, and J. Drnek, Refinement of steel microstructure by free forging, J. Achiev. Mater. Manuf. Eng., 16(2006), No. 1–2, p. 17.

    Google Scholar 

  28. J. Hidalgo, K.O. Findley, and M.J. Santofimia, Thermal and mechanical stability of retained austenite surrounded by martensite with different degrees of tempering, Mater. Sci. Eng. A, 690(2017), No. 6, p. 337.

    Article  Google Scholar 

  29. S.S.M. Tavares, S.R. Mello, A.M. Gomes, J.M. Neto, M.R. da Silva, and J.M. Pardal, X-ray diffraction and magnetic characterization of the retained austenite in a chromium alloyed high carbon steel, J. Mater. Sci., 41(2005), No. 15, p. 4732.

    Article  Google Scholar 

  30. R.E. Hummel, Electronic Properties of Materials, Springer, New York, 2011.

    Book  Google Scholar 

  31. D.S. Petrovic, Non-oriented electrical steel sheets, Mater. Technol., 44(2010), No. 6, p. 317.

    Google Scholar 

  32. J. Barros, T. Ros-Yañez, L. Vandenbossche, L. Dupré, J. Melkebeek, and Y. Houbaert, The effect of Si and Al concentration gradients on the mechanical and magnetic properties of electrical steel, J. Magn. Magn. Mater., 290–291(2005), p. 1457.

    Article  Google Scholar 

  33. K. Jenkins and M. Lindenmo, Precipitates in electrical steels, J. Magn. Magn. Mater., 320(2008), No. 20. p. 2423.

    Article  Google Scholar 

  34. H. Oikawa, G. Murayama, T. Sakiyama, Y. Takahashi, and T. Ishikawa, Resistance spot weldability of high strength steel (HSS) sheets for automobiles, Nippon Steel Technical Report, No. 95, p. 39.

  35. D. Pereira, T. Clarke, R. Menezes, and T. Hirsch, Effect of microstructure on the electrical conductivity of Inconel 718 alloys, Mater. Sci. Technol., 31(2015), No. 6, p. 669.

    Article  Google Scholar 

  36. P. Beckley and J.E. Thompson, Influence of inclusions on domain-wall motion and power loss in oriented electrical steel, Proc. Inst. Electr. Eng., 117(1970), No. 11, p. 2194.

    Article  Google Scholar 

  37. M.F. Littmann, Iron and silicon-iron alloys, IEEE Trans. Magn. 7(1971), No. 1, p. 48.

    Google Scholar 

  38. T.L. Bergman, A.S. Lavine, F.P. Incropera, and D.P. DeWitt, Fundamentals of Heat and Mass Transfer, Wiley & Sons, Hoboken, N.J., 2007, p. 70.

    Google Scholar 

  39. H. Ghazanfari and M. Naderi, Expulsion characterization in resistance spot welding by means of a hardness mapping technique, Int. J. Miner. Metall. Mater., 21(2014), No. 9, p. 894.

    Article  Google Scholar 

  40. N. den Uijl, Resistance spot welding of a complicated joint in new advanced high strength steel, [in] Proceedings of the 6th International Seminar on Advances in Resistance Welding, Hamburg, 2010.

    Google Scholar 

  41. A. Grajcar, M. Kaminska, U. Galisz, L. Bulkowski, M. Opiela, and P. Skrzypczyk, Modification of non-metallic inclusions in high-strength steels containing increased Mn and Al contents, J. Achiev. Mater. Manuf. Eng., 55(2012), No. 2, p. 245.

    Google Scholar 

  42. N.J. den Uijl, Thermal and electrical resistance in resistance spot welding, [in] Proceedings of the 17th International Conference on Computer Technology in Welding and Manufacturing, Cranfield, 2008.

    Google Scholar 

  43. M. Pouranvari, H.R. Asgari, S.M. Mosavizadch, P.H. Marashi, and M. Goodarzi, Effect of weld nugget size on overload failure mode of resistance spot welds, Sci. Technol. Weld. Joining, 12(2007), No. 3, p. 217.

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the Coordinación de la Investigación Científica (CIC) of the Universidad Michoacana de San Nicolás de Hidalgo (UMSNH-México) for the support during this project (CIC-UMSNH-1.8). V.H. Vargas’ studies were sponsored by the National Council on Science and Technology (Consejo Nacional de Ciencia y Tecnología-México) and would like to thank for the support during this project N.B. 254928.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Mejía.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas, V.H., Mejía, I., Baltazar-Hernández, V.H. et al. Effect of retained austenite and nonmetallic inclusions on the thermal/electrical properties and resistance spot welding nuggets of Si-containing TRIP steels. Int J Miner Metall Mater 26, 52–63 (2019). https://doi.org/10.1007/s12613-019-1709-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1709-9

Keywords

Navigation