Sintering behavior and thermal conductivity of nickel-coated graphite flake/copper composites fabricated by spark plasma sintering

  • Hui Xu
  • Jian-hao Chen
  • Shu-bin Ren
  • Xin-bo He
  • Xuan-hui Qu
Article
  • 14 Downloads

Abstract

Nickel-coated graphite flakes/copper (GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes (GFs) being modified by Ni–P electroless plating. The effects of the phase transition of the amorphous Ni–P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity (TC) of the GN/Cu composites were systematically investigated. The introduction of Ni–P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650°C and slightly increased the TC of the X–Y basal plane of the GF/Cu composites with 20vol%–30vol% graphite flakes. However, when the graphite flake content was greater than 30vol%, the TC of the GF/Cu composites decreased with the introduction of Ni–P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites.

Keywords

copper matrix composites graphite flake nickel–phosphorus transition layer sintering behavior thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51374028) and Fundamental Research Funds for the Central Universities (FRF-GF-17-B37).

References

  1. [1]
    G. Xin, H. Sun, T. Hu, H.R. Fard, X. Sun, N. Koratkar, T. Borca-Tasciuc, and J. Lian, Large-area freestanding graphene paper for superior thermal management, Adv. Mater., 26(2014), No. 26, p. 4521.CrossRefGoogle Scholar
  2. [2]
    R. Prieto, J.M. Molina, J. Narciso, and E. Louis, Fabrication and properties of graphite flakes/metal composites for thermal management applications, Scripta Mater., 59(2008), No. 1, p. 11.CrossRefGoogle Scholar
  3. [3]
    C. Zhou, G. Ji, Z. Chen, M.L. Wang, A. Addad, D. Schryvers, and H.W. Wang, Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications, Mater. Des., 63(2014), p. 719.CrossRefGoogle Scholar
  4. [4]
    W.J. Li, Y. Liu, and G.H. Wu, Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting, Carbon, 95(2015), p. 545.CrossRefGoogle Scholar
  5. [5]
    I. Firkowska, A. Boden, B. Boerner, and S. Reich, The origin of high thermal conductivity and ultralow thermal expansion in copper-graphite composites, Nano Lett., 15(2015), No. 7, p. 4745.CrossRefGoogle Scholar
  6. [6]
    J.H. Chen, S.B. Ren, X.B He, and X.H. Qu, Properties and microstructure of nickel-coated graphite flakes/copper composites fabricated by spark plasma sintering, Carbon, 121(2017), p. 25.CrossRefGoogle Scholar
  7. [7]
    L. Weber and R. Tavangar, Diamond-based metal matrix composites for thermal management: potential and limits, Adv. Mater. Res., 59(2009), p. 111.CrossRefGoogle Scholar
  8. [8]
    J.C. Lloyd, E. Neubauer, J. Barcena, and W.J. Clegg, Effect of titanium on copper-titanium/carbon nanofibre composite materials, Compos. Sci. Technol., 70(2010), No. 16, p. 2284.CrossRefGoogle Scholar
  9. [9]
    J.S. He, H.L. Zhang, Y. Zhang, Y.M. Zhao, and X.T. Wang, Effect of boron addition on interface microstructure and thermal conductivity of Cu/diamond composites produced by high temperature-high pressure method, Phys. Status Solidi A, 211(2014), No. 3, p. 587.CrossRefGoogle Scholar
  10. [10]
    J.W. Li, X.T. Wang, Y. Qiao, Y. Zhang, Z.B. He, and H.L. Zhang, High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites, Scripta Mater., 109(2015), p. 72.CrossRefGoogle Scholar
  11. [11]
    K. Chu, C.C. Jia, H. Guo, and W.S. Li, On the thermal conductivity of Cu–Zr/diamond composites, Mater. Des., 45(2013), p. 36.CrossRefGoogle Scholar
  12. [12]
    Y.H. Sun, L.K. He, C. Zhang, Q.N. Meng, B.C. Liu, K. Gao, M. Wen, and W.T. Zheng, Enhanced tensile strength and thermal conductivity in copper diamond composites with B4C coating, Sci. Rep., 7(2017), No.1, p. 10727.CrossRefGoogle Scholar
  13. [13]
    S.D. Ma, N.Q. Zhao, C.S. Shi, E.Z. Liu, C.N. He, F. He, and L.Y. Ma, Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites, Appl. Surf. Sci., 402(2017), p. 372.CrossRefGoogle Scholar
  14. [14]
    W. Cui, H. Xu, J.H. Chen, S.B. Ren, X.B. He, and X.H. Qu, Effect of sintering on the relative density of Cr-coated diamond/Cu composites prepared by spark plasma sintering, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 716.CrossRefGoogle Scholar
  15. [15]
    J.Q. Gao, Y.T. Wu, L. Liu, B. Shen, and W.B. Hu, Crystallization temperature of amorphous electroless nickel-phosphorus alloys, Mater. Lett., 59(2005), No. 13, p. 1665.CrossRefGoogle Scholar
  16. [16]
    Á. Révész, J. Lendvai, J. Lóránth, J. Pádár, and I. Bakonyi, Nanocrystallization studies of an electroless plated Ni–P amorphous alloy, J. Electrochem. Soc., 148(2001), No. 11, p. C715.CrossRefGoogle Scholar
  17. [17]
    T. Rabizadeh, S.R. Allahkaram, and A. Zarebidaki, An investigation on effects of heat treatment on corrosion properties of Ni-P electroless nano-coatings, Mater. Des., 31(2010), No. 7, p. 3174.CrossRefGoogle Scholar
  18. [18]
    S.H. Park and D.N. Lee, A study on the microstructure and phase transformation of electroless nickel deposits, J. Mater. Sci., 23(1988), No. 5, p. 1643.CrossRefGoogle Scholar
  19. [19]
    K.H. Hur, J.H. Jeong, and D.N. Lee, Microstructures and crystallization of electroless Ni–P deposits, J. Mater. Sci., 25(1990), No.5, p. 2573.CrossRefGoogle Scholar
  20. [20]
    Z. Guo, K.G. Keong, and W. Sha, Crystallisation and phase transformation behaviour of electroless nickel phosphorus platings during continuous heating, J. Alloys Compd., 358(2003), No. 1-2, p. 112.CrossRefGoogle Scholar
  21. [21]
    C.Y. Ho, M.W. Ackerman, K.Y. Wu, S.G. Oh, and T.N. Havill, Thermal conductivity of ten selected binary alloy systems, J. Phys. Chem. Ref. Data, 7(1978), No. 3, p. 959.CrossRefGoogle Scholar
  22. [22]
    S. Divinski, J. Ribbe, G. Schmitz, and C Herzig, Grain boundary diffusion and segregation of Ni in Cu, Acta Mater., 55(2007), No. 10, p. 3337.CrossRefGoogle Scholar
  23. [23]
    H. Shimizu, M. Ono, N. Koyama, and Y. Ishida, Sputter-enhanced diffusion phenomena in Cu/Ni alloys at elevated temperatures, J. Appl. Phys., 53(1982), No. 4, p. 3044.CrossRefGoogle Scholar
  24. [24]
    E.B. Modin, E.V. Pustovalov, A.N. Fedorets, A.V. Dubinets, B.N. Grudin, V.S. Plotnikov, and S.S. Grabchikov, Atomic structure and crystallization processes of amorphous (Co, Ni)–P metallic alloy, J. Alloys Compd., 641(2015), p. 139.CrossRefGoogle Scholar
  25. [25]
    K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, and K.N. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper, Science, 321(2008), No. 5892, p. 1066.CrossRefGoogle Scholar
  26. [26]
    C.W. Nan, R. Birringer, D.R. Clarke, and H. Gleiter, The effective thermal conductivity of particular composites with interfacial thermal resistance, J. Appl. Phys., 81(1997), No. 10, p. 6692.CrossRefGoogle Scholar
  27. [27]
    C.W. Nan, G. Liu, Y.H. Lin, and M. Li, Interface effect on thermal conductivity of carbon nanotube composites, Appl. Phys. Lett., 85(2004), No. 16, p. 3549.CrossRefGoogle Scholar
  28. [28]
    Y.B. Zhu, H. Bai, C. Xue, R. Zhou, Q.F. Xu, P.F. Tao, C. Wang, J.W. Wang, and N. Jiang, Thermal conductivity and mechanical properties of a flake graphite/Cu composite with a silicon nano-layer on a graphite surface, RSC Adv., 100 (2016), No.6, p. 98190.CrossRefGoogle Scholar
  29. [29]
    R. Prieto, J.M. Molina, J. Narciso, and E. Louis, Thermal conductivity of graphite flakes–SiC particles/metal composites, Compos. Part A, 42(2011), No. 12, p. 1970.CrossRefGoogle Scholar
  30. [30]
    E.T. Swartz and R.O. Pohl, Thermal boundary resistance, Rev. Mod. Phys., 61(1989), p. 605.CrossRefGoogle Scholar
  31. [31]
    J.M. Molina, R. Prieto, J. Narciso, and E. Louis, The effect of porosity on the thermal conductivity of Al–12 wt.% Si/SiC composites, Scripta Mater., 60(2009), No. 7, p. 582.CrossRefGoogle Scholar
  32. [32]
    D.V. Louzguine-luzgin, A.D. Setyawan, H. Kato, and A. Inoue, Influence of thermal conductivity on the glass-forming ability of Ni-based and Cu-based alloys, Appl. Phys. Lett., 88(2006), No. 25, article No.251902.Google Scholar
  33. [33]
    K. Jagannadham, Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets, Metall. Mater. Trans. B, 43(2012), No. 2, p. 316.CrossRefGoogle Scholar
  34. [34]
    K. Lu, J.T. Wang, and W.D. Wei, Thermal expansion and specific heat capacity of nanocrystalline Ni–P alloy, Scr. Metall. Mater., 25(1991), No. 3, p. 619.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hui Xu
    • 1
  • Jian-hao Chen
    • 1
  • Shu-bin Ren
    • 1
  • Xin-bo He
    • 1
  • Xuan-hui Qu
    • 1
  1. 1.Institute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations