Evaluation of precipitation hardening in TiC-reinforced Ti2AlNb-based alloys

  • Ya-ran Zhang
  • Qi Cai
  • Yong-chang Liu
  • Zong-qing Ma
  • Chong Li
  • Hui-jun Li


Ti2AlNb-based alloys with 0.0wt%, 0.6wt%, and 2.0wt% carbon nanotube (CNT) addition were fabricated from spherical Ti–22Al–25Nb powder by sintering in the B2 single-phase region. Phase identification and microstructural examination were performed to evaluate the effect of carbon addition on the hardness of the alloys. Carbon was either in a soluble state or in carbide form depending on its concentration. The acicular carbides formed around 1050°C were identified as TiC and facilitated the transformation of α2 + B2 → O. The TiC was located within the acicular O phase. The surrounding O phase was distributed in certain orientations with angles of 65° or 90° O phase particles. The obtained alloy was composed of acicular O, Widmanstatten B2 + O, and acicular TiC. As a result of the precipitation of carbides as well as the O phase, the hardness of the alloy with 2.0wt% CNT addition increased to HV 429 ± 9.


Ti2AlNb alloy carbides microstructure precipitation hardening hardness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to the China National Funds for Distinguished Young Scientists (No. 51325401), the National Natural Science Foundation of China (Nos. 51474156 and U1660201), and the National Magnetic Confinement Fusion Energy Research Program of China (No. 2014GB125006) for financial support.


  1. [1]
    D. Banerjee and J.C. Williams, Perspectives on titanium science and technology, Acta Mater., 61(2013), No. 3, p. 844.CrossRefGoogle Scholar
  2. [2]
    A. Nocivin, I. Cinca, D. Raducanu, V.D. Cojocaru, and I.A. Popovici, Mechanical properties of a Gum-type Ti-Nb-Zr-Fe-O alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 909.CrossRefGoogle Scholar
  3. [3]
    Y.Y. Zong, B. Shao, Y.T. Tian, and D.B. Shan, A study of the sharp yield point of a Ti–22Al–25Nb alloy, J. Alloys Compd., 701(2017), p. 727.CrossRefGoogle Scholar
  4. [4]
    X. Lu, L.H. Zhao, L.P. Zhu, B. Zhang, and X.H. Qu, High-temperature mechanical properties and deformation behavior of high Nb containing TiAl alloys fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., 19(2012), No. 4, p. 354.CrossRefGoogle Scholar
  5. [5]
    H.B. Feng, D.C. Jia, and Y. Zhou, Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites, Composites Part A, 36(2005), No. 5, p. 558.CrossRefGoogle Scholar
  6. [6]
    S. Ranganath and R.S. Mishra, Steady state creep behaviour of particulate-reinforced titanium matrix composites, Acta Mater., 44(1996), No. 3, p. 927.CrossRefGoogle Scholar
  7. [7]
    Y.Y. Liu, Z.K. Yao, H.Z. Guo, and H.H. Yang, Microstructure and property of the Ti–24Al–15Nb–1.5 Mo/TC11 joint welded by electron beam welding, Int. J. Miner. Metall. Mater., 16(2009), No. 5, p.568.CrossRefGoogle Scholar
  8. [8]
    H.B. Yang, T. Gao, H.C. Wang, J.F. Nie, and X.F Liu, Influence of C/Ti stoichiometry in TiCx on the grain refinement efficiency of Al–Ti–C master alloy, J. Mater. Sci. Technol., 33(2017), No. 7, p. 616.CrossRefGoogle Scholar
  9. [9]
    S.C. Tjong and Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng. R, 29(2000), No. 3-4, p. 49.CrossRefGoogle Scholar
  10. [10]
    B. Ghosh and S.K. Pradhan, Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying, Mater. Chem. Phys., 120(2010), No. 2-3, p. 537.CrossRefGoogle Scholar
  11. [11]
    M. Razavi, M.R. Rahimipour, and A.H. Rajabi-Zamani, Effect of nanocrystalline TiC powder addition on the hardness and wear resistance of cast iron, Mater. Sci. Eng. A, 454-455(2007), p. 144.CrossRefGoogle Scholar
  12. [12]
    E. Zhang, S.Y. Zeng, and B. Wang, Preparation and microstructure of in situ particle reinforced titanium matrix alloy, J. Mater. Process. Technol., 125-126(2002), p. 103.CrossRefGoogle Scholar
  13. [13]
    I.A.M. Arif, M.K. Talari, A.L. Anis, M.H. Ismail, and N.K. Babu, Grain refinement, microstructural and hardness investigation of C added Ti–15–3 Alloys prepared by argon arc melting, Trans. Indian Inst. Met., 70(2017), No. 3, p. 861.CrossRefGoogle Scholar
  14. [14]
    R. Sarkar, P. Ghosal, K. Muraleedharan, T.K. Nandy, and K.K. Ray, Effect of boron and carbon addition on microstructure and mechanical properties of Ti-15-3 alloy, Mater. Sci. Eng. A, 528(2011), No. 13-14, p. 4819.CrossRefGoogle Scholar
  15. [15]
    R. Banoth, R. Sarkar, A. Bhattacharjee, T.K. Nandy, and G. V.S.N Rao, Effect of boron and carbon addition on microstructure and mechanical properties of metastable beta titanium alloys, Mater. Des., 67(2015), p. 50.CrossRefGoogle Scholar
  16. [16]
    N.K. Babu, K. Kallip, M. Leparoux, M.K. Talari, K.A. Alogab, and N.M. Alqahtani, Phase evolution during high energy cube milling of Ti–6Al–4V0.5 vol% TiC powders using heptane and tin as process control agents (PCAs), Adv. Eng. Mater., 19(2017), No. 2, art. No. 1600662.Google Scholar
  17. [17]
    Q.M. Wang, K. Zhang, J. Gong, Y.Y. Cui, C. Sun, and L.S. Wen, NiCoCrAlY coatings with and without an Al2O3/Al interlayer on an orthorhombic Ti2AlNb-based alloy: Oxidation and interdiffusion behaviors, Acta Mater., 55(2007), No. 4, p.1427.Google Scholar
  18. [18]
    H.P. Duan, H.X. Xu, W.H. Su, Y.B. Ke, Z.Q. Liu, and H.H. Song, Effect of oxygen on the microstructure and mechanical properties of Ti–23Nb–0.7Ta–2Zr alloy, Int. J. Miner. Metall. Mater., 19(2012), No. 12, p. 1128CrossRefGoogle Scholar
  19. [19]
    H. Zhang, H.J. Li, Q.Y. Guo, Y.C. Liu, and L.M. Yu, Hot deformation behavior of Ti–22Al–25Nb alloy by processing maps and kinetic analysis, J. Mater. Res., 31(2016), No. 12, p. 1764.CrossRefGoogle Scholar
  20. [20]
    B. Shao, Y.Y. Zong, D.S. Wen, Y.T. Tian, and D.B. Shan, Investigation of the phase transformations in Ti–22Al–25Nb alloy, Mater. Charact., 114(2016), p. 75.CrossRefGoogle Scholar
  21. [21]
    Y.C. Liu, F. Lan, G.C. Yang, and Y.H. Zhu, Microstructural evolution of rapidly solidified Ti–Al peritectic alloy, J. Cryst. Growth, 271(2004), No. 1-2, p. 313.CrossRefGoogle Scholar
  22. [22]
    C.J. Cowen and C.J. Boehlert, Comparison of the microstructure, tensile, and creep behavior for Ti–22Al–26Nb (at. pct) and Ti–22Al–26Nb–5B (at. pct), Metall. Mater. Trans. A, 38(2007), No. 1, p. 26.CrossRefGoogle Scholar
  23. [23]
    T.K. Nandy, R.S. Mishra, and D. Banerjee, Creep behaviour of an orthorhombic phase in a Ti–Al–Nb alloy, Scripta Met. Mater., 28(1993), No. 5, p. 569.CrossRefGoogle Scholar
  24. [24]
    C.J. Boehlert, B.S. Majumdar, V. Seetharaman, and D.B. Miracle, Part I. The microstructural evolution in Ti–Al–Nb O + BCC orthorhombic alloys, Metall, Mater. Trans. A, 30(1999), No. 9, p. 2305.CrossRefGoogle Scholar
  25. [25]
    I.W. Hall and C.Y. Ni, Thermal stability of an SCS-6/Ti–22Al–23Nb composite, Mater. Sci. Eng. A, 192-193(1995), p. 987.CrossRefGoogle Scholar
  26. [26]
    Y.Q. Yang, Y. Zhu, Z.J. Ma, and Y. Chen, Formation of interfacial reaction products in SCS-6SiC/Ti2AlNb composites, Scripta Mater., 51(2004), No. 5, p. 385.CrossRefGoogle Scholar
  27. [27]
    X. Luo, Y.Q. Wang, Y.Q. Yang, M.X. Zhang, B. Huang, S. Liu, and N. Jin, Effect of C/Mo duplex coating on the interface and tensile strength of SiCf/Ti–21Al–29Nb composites, J. Alloys Compd., 721(2017), p. 653.CrossRefGoogle Scholar
  28. [28]
    P.R. Smith, A.H. Rosenberger, M.J. Shepard, and R. Wheeler, Review AP/M approach for the fabrication of an orthorhombic titanium aluminide for MMC applications, J. Mater. Sci., 35(2000), No. 13, p. 3169.CrossRefGoogle Scholar
  29. [29]
    J. Wu, L. Xu, Z.G. Lu, B. Lu, Y.Y. Cui, and R. Yang, Microstructure design and heat response of powder metallurgy Ti2AlNb alloys, J. Mater. Sci. Technol., 31(2015), No. 12, p. 1251.CrossRefGoogle Scholar
  30. [30]
    P. Davies, R. Pederson, M. Coleman, and S. Birosca, The hierarchy of microstructure parameters affecting the tensile ductility in centrifugally cast and forged Ti-834 alloy during high temperature exposure in air, Acta Mater., 117(2016), p. 51.CrossRefGoogle Scholar
  31. [31]
    S. Gorsse, Y. L. Petitcorps, S. Matar, and F. Rebillat, Investigation of the Young's modulus of TiB needles in situ produced in titanium matrix composite, Mater. Sci. Eng. A, 340(2003), No. 1-2, p. 80.CrossRefGoogle Scholar
  32. [32]
    H. Feng, D. Jia, and Y. Zhou, Influence factors of ball milling process on BE powder for reaction sintering of TiB/Ti-4.0Fe-7.3Mo composite, J. Mater. Process. Technol., 182(2007), No. 1-2, p. 79.CrossRefGoogle Scholar
  33. [33]
    H.Z. Niu, Y.F. Chen, D.L. Zhang, Y.S. Zhang, J.W. Lu, W. Zhang, and P.X. Zhang, Fabrication of a powder metallurgy Ti2AlNb-based alloy by spark plasma sintering and associated microstructure optimization, Mater. Des., 89(2016), p. 823.CrossRefGoogle Scholar
  34. [34]
    M. Li, Q. Cai, Y.C. Liu, Z.Q. Ma, Z.M. Wang, Y. Huang, and J.X. Yu, Dual structure O + B2 for enhancement of hardness in furnace-cooled Ti2AlNb-based alloys by powder metallurgy, Adv. Powder Technol., 28(2017), No. 7, p. 1719.CrossRefGoogle Scholar
  35. [35]
    M. Li, Q. Cai, Y. Liu, Z. Ma, Z. Wang, Y. Huang, and H. Li, Formation of fine B2/β + O structure and enhancement of hardness in the aged Ti2AlNb-Based alloys prepared by spark plasma sintering, Metall. Mater. Trans. A, 48(2017), No. 9, p. 4365.CrossRefGoogle Scholar
  36. [36]
    M. Behera, S. Raju, R. Mythili, and S. Saroja, Study of kinetics of α⇔ β phase transformation in Ti–4.4 mass% Ta–1.9 mass% Nb alloy using differential scanning calorimetry, J. Therm. Anal. Calorim., 124(2016), No. 3, p. 1217.CrossRefGoogle Scholar
  37. [37]
    M.I.D. Barros, D. Rats, L. Vandenbulcke, and G. Farges, Influence of internal diffusion barriers on carbon diffusion in pure titanium and Ti–6Al–4V during diamond deposition, Diamond Relat. Mater., 8(1999), No. 6, p. 1022.CrossRefGoogle Scholar
  38. [38]
    M. Hansen, K. Anderko, and H.W. Salzberg, Constitution of binary alloys, J. Electrochem. Soc., 105(1958), No. 12, p. 260.CrossRefGoogle Scholar
  39. [39]
    K. Muraleedharan, D. Banerjee, S. Banerjee, and S. Lele, The α2-to-O transformation in Ti–Al–Nb alloys, Philos. Mag. A., 5(1995), No. 5, p. 1011.CrossRefGoogle Scholar
  40. [40]
    J. Roger, B. Gardiola, J. Andrieux, J.C. Viala, and O. Dezellus, Synthesis of Ti matrix composites reinforced with TiC particles: thermodynamic equilibrium and change in microstructure, J. Mater. Sci., 52(2017), No. 7, p. 4129.CrossRefGoogle Scholar
  41. [41]
    H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2(1969), No. 2, p. 65.CrossRefGoogle Scholar
  42. [42]
    W. Wang, W.D. Zeng, C. Xue, X.B. Liang, and J.W. Zhang, Quantitative analysis of the effect of heat treatment on microstructural evolution and microhardness of an isothermally forged Ti–22Al–25Nb (at.%) orthorhombic alloy, Intermetallics, 45(2014), p. 29.CrossRefGoogle Scholar
  43. [43]
    Y. Wang, X.Q. Cai, Z.W. Yang, D.P. Wang, X.G. Liu, and Y.C. Liu, Effects of Nb content in Ti–Ni–Nb brazing alloys on the microstructure and mechanical properties of Ti–22Al–25Nb alloy brazed joints, J. Mater. Sci. Technol., 33(2017), No. 7, p. 682.CrossRefGoogle Scholar
  44. [44]
    B. Shao, S.X. Wan, D.B. Shan, B. Guo, and Y.Y. Zong, Hydrogen-induced improvement of the cylindrical drawing properties of a Ti–22Al–25Nb alloy, Adv. Eng. Mater., 19(2016), No. 3, art. No. 1600621.Google Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ya-ran Zhang
    • 1
  • Qi Cai
    • 2
  • Yong-chang Liu
    • 1
  • Zong-qing Ma
    • 1
  • Chong Li
    • 1
  • Hui-jun Li
    • 1
  1. 1.State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science and EngineeringTianjin UniversityTianjinChina
  2. 2.Materials Genome InstituteShanghai UniversityShanghaiChina

Personalised recommendations