Nutritional Risk and Mortality at One Year for Elderly Patients Hospitalized with Nonvalvular Atrial Fibrillation. NONAVASC Registry



To determine whether nutritional risk is associated with the mortality of elderly patients hospitalized with nonvalvular atrial fibrillation (NVAF).


Prospective, multicenter cohort study.


Internal medicine departments in Spain.


Inpatients >75 years with NVAF.


We measured the thrombotic and hemorrhagic risk at admission using the CHA2DS2-VASc and HAS-BLED scales, respectively, and the nutritional risk with the controlling nutritional status (CONUT) index. We established 4 degrees of nutritional risk: null (CONUT score 0–1 point), low (2–4 points), moderate (5–8 points) and high (9–12 points). We also conducted a 1-year follow-up.


We included 449 patients, with a mean age of 85.2(5.2) years. The nutritional risk was null for 70(15.6%) patients, low for 206 45.9%), moderate for 152(33.8%) and high for 21(4.7%). At the end of one year, 177(39.4%) patients had died. The score on the CONUT index was higher for the deceased patients (4.6 vs. 3.6, p<0.001). The CONUT score (HR, 1.076; 95%CI 1.009–1.148; p=0.025), the Charlson index (HR, 1.080; 95%CI 1.017–1.148; p=0.013) and the presence of pressure ulcers (HR, 1.700; 95%CI 1.028–2.810; p=0.039) were independently associated with increased mortality at one year of follow-up. The prescription of oral anticoagulants at discharge was associated with lower mortality (HR, 0.440; 95%CI 0.304–0.638; p<0.001).


More than a third of elderly patients hospitalized with NVAF have a moderate to high nutritional risk. These patients have greater mortality at the end of one year.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2


  1. 1.

    Staerk L, Wang B, Preis SR, Larson MG, Lubitz SA, Ellinor PT, et al. Lifetime risk of atrial fibrillation according to optimal, borderline, or elevated levels of risk factors: cohort study based on longitudinal data from the Framingham Heart Study. BMJ 2018;360:k14S3.

    Google Scholar 

  2. 2.

    Gómez-Doblas JJ, Muñiz J, Martin JJ, Rodríguez-Coca G, Lobos JM, Awamleh P, et al; OFRECE study collaborators. Prevalence of atrial fibrillation in Spain. OFRECE study results. Rev Esp Cardiol (Eng Ed) 2014;67:259–269.

    Article  Google Scholar 

  3. 3.

    Zoni-Berisso M, Lercari F, Caraza T, Domenicucci S. Epidemiology of atrial fibrillation: European perspective. Clin Epidemiol 2014;6:213–220.

    Article  Google Scholar 

  4. 4.

    Schnabel RB, Yin X, Gona P, Larson MG, Beiser AS, McManus DD, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors and mortality in the Framingham Heart Study: a cohort study. Lancet 2015;386:154–162.

    Article  Google Scholar 

  5. 5.

    Fumagalli S, Potpara TS, Bjerregaard Larsen T, Haugaa KH, Dobreanu D, Proclemer A, et al. Frailty syndrome: an emerging clinical problem in the everyday management of clinical arrhythmias. The results of the European Heart Rhythm Association survey. Europace 2017;19:1896–1902.

    Article  Google Scholar 

  6. 6.

    Nguyen TN, Cumming RG, Hilmer SN. The impact of frailty on mortality, length of stay and re-hospitalisation in older patients with atrial fibrillation. Heart Lung Circ 2016;25:551–557.

    Article  Google Scholar 

  7. 7.

    Wei K, Thein FS, Nyunt MSZ, Gao Q, Wee SL, Ng TP. Nutritional and frailty state transitions in the Singapure Longitudinal Aging Study. J Nutr Health Aging 2018;22:1221–1227.

    CAS  Article  Google Scholar 

  8. 8.

    Anaszewicz M, Budzyński J. Clinical significance of nutritional status in patients with atrial fibrillation: an overview of current evidence. J Cardiol 2017;69:719–730.

    Article  Google Scholar 

  9. 9.

    De Ulíbarri JI, González-Madroño A, de Villar NG, González P, González B, Mancha A, et al. CONUT: a tool for controlling nutritional status. First validation in a hospital population. Nutr Hosp 2005;20:38–45.

    Google Scholar 

  10. 10.

    Gullón A, Suárez C, Díez-Manglano J, Formiga F, Cepeda JM, Pose A, et al, en representación de los investigadores del estudio NONAVASC. Antithrombotic treatment and characteristics of elderly patients with non-valvular atrial fibrillation hospitalized at Internal Medicine departments. NONAVASC registry. Med Clin (Bare) 2017; 148: 204–210.

    Article  Google Scholar 

  11. 11.

    Requena Calleja MA, Arenas Miquélez A, Díez-Manglano J, Gullón A, Pose A, Formiga F, et al, on behalf of the researchers of the NONAVASC study Vascular Risk Group of the Spanish Society of Internal Medicine. Sarcopenia, frailty, cognitive impairment and mortality in elderly patients with non-valvular atrial fibrillation. Rev Clin Esp 2019;219:424–432.

    CAS  Article  Google Scholar 

  12. 12.

    Fauchier L, Philippart R, Clementy N, Bourguignon T, Angoulvant D, Ivanes F, et al. How to define valvular atrial fibrillation? Arch Cardiovasc Dis. 2015;2108: 530–539.

    Article  Google Scholar 

  13. 13.

    Camm AJ, Lip GY, de Caterina R, Savelieva I, Atar D, Hohnloser SH, et al., ESC Committee for Practice Guidelines (CPG). 2012 focused update of the ESC Guidelines for the management of atrial fibrillation: an update of the 2010 ESC Guidelines for the management of atrial fibrillation. Eur Heart J 2012;33:2719–2747.

    Article  Google Scholar 

  14. 14.

    Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest 2010; 137: 263–272.

    Article  Google Scholar 

  15. 15.

    Pisters R, Lane DA, Nieuwlaat R, de Vos CB, Crijns HJ, Lip GY. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the euro heart survey. Chest 2010; 138: 1093–1100.

    Article  Google Scholar 

  16. 16.

    Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40:373–383.

    CAS  Article  Google Scholar 

  17. 17.

    Mahoney FI, Barthel DW. Functional evaluation: the Barthel Index. Md State Med J 1965;4:61–65.

    Google Scholar 

  18. 18.

    Pfeiffer E. A short portable mental status questionnaire for the assessment of organic brain deficit in elderly patients. J Am Geriatr Soc 1975;3:433–441.

    Article  Google Scholar 

  19. 19.

    Morley JE, Malmstrom TK, Miller DK. A simple frailty questionnaire (FRAIL) predicts outcomes in middle aged Africans Americans. J Nutr Health Aging 2012; 16: 601–608.

    CAS  Article  Google Scholar 

  20. 20.

    Malmstrom TK, Morley JE. SARC-F: a simple questionnaire to rapidly diagnose sarcopenia. J Am Med Dir Assoc 2013;14:531–532.

    Article  Google Scholar 

  21. 21.

    Asad Z, Abbas M, Javed I, Korantzopoulos P, Stavrakis S. Obesity is associated with incident atrial fibrillation independent of gender: A meta-analysis. J Cardiovasc Electrophysiol 2018;29:725–732.

    Article  Google Scholar 

  22. 22.

    Shulman E, Chudow JJ, Shah T, Shah K, Peleg A, Nevelev D, et al. Relation of body mass index to development of atrial fibrillation in hispanics, blacks, and non-hispanic whites. Am J Cardiol 2018; 121: 1177–1781.

    Article  Google Scholar 

  23. 23.

    Ball J, Lochen ML, Carrington MJ, Wiley JF, Stewart S. Impact of body mass index on mortality and hospitalisation of patients with atrial fibrillation. Eur J Cardiovasc Nurs 2018; 17: 627–366.

    Article  Google Scholar 

  24. 24.

    Agarwal MA, Garg L, Shah M, Patel B, Jain N, Jain S, et al. Relation of obesity to outcomes of hospitalizations for atrial fibrillation. Am J Cardiol 2019; 123: 1448–1452.

    Article  Google Scholar 

  25. 25.

    Glover BM, Hong KL, Dagres N, Arbelo E, Laroche C, Riahi S, et al; ESC-EHRA Atrial Fibrillation Ablation Long-Term Registry investigators. Impact of body mass index on the outcome of catheter ablation of atrial fibrillation. Heart 2019; 105: 244–250.

    Article  Google Scholar 

  26. 26.

    Wang HJ, Si QJ, Shan ZL, Guo YT, Lin K, Zhao XN, et al. Effects of Body Mass Index on Risks for ischemic stroke, thromboembolism, and mortality in Chinese atrial fibrillation patients: a single-center experience. PLos ONE 2015; 10: e123516.

    Google Scholar 

  27. 27.

    Díez-Manglano J, Clemente-Sarasa C. The nutritional risk and short-, medium- and long-term mortality of hospitalized patients with atrial fibrillation. Aging Clin Exp Res 2019;31:1775–1781.

    Article  Google Scholar 

  28. 28.

    Cheng N, Dang A, Lv N, He Y, Wang X. Malnutrition status in patients of very advanced age with nonvalvular atrial fibrillation and its impact on clinical outcomes. Nutr Metab Cardiovasc Dis 2019;29:1101–1109.

    Article  Google Scholar 

  29. 29.

    Nishi I, Seo Y, Hamada-Harimura Y, Sato K, Sai S, Yamamoto M, et al, Ibaraki Cardiovascular Assessment Study-Heart Failure Investigators. Utility of nutritional screening in predicting short-term prognosis of heart failure patients. J-Stage 2018;59:354–360.

    CAS  Google Scholar 

  30. 30.

    Yoshihisa A, Kanno Y, Watanabe S, Yokokawa T, Abe S, Miyata M, et al. Impact of nutritional indices on mortality in patients with heart failure. Open Heart 2018;: e000730.

    Google Scholar 

  31. 31.

    López Espuela F, Ronsero-Martín R, Pedrera Zamorano JD, Rey-Sánchez P, Aliaga-Vera I, Portilla Cuenca JC, et al. Controlling Nutritional Status (CONUT) score as a predictor of all-cause mortality at 3 months in stroke patients. Biol Res Nurs 2019;21:564–570.

    Article  Google Scholar 

  32. 32.

    Qi H, Yang X, Hao C, Zhang F, Pang X, Zhou Z, et al. Clinical value of Controlling Nutritional Status score in patients with aneurysmal subarachnoid hemorrhage. World Neurosurg 2019;126:el352–1358.

    Article  Google Scholar 

  33. 33.

    Kodama A, Takahashi N, Sugjmoto M, Niimi K, Banno H, Komori K. Associations of nutritional status and muscle size with mortality after open aortic aneurysm repair. J Vase Surg 2019;70:1585–1593.

    Article  Google Scholar 

  34. 34.

    Okuno T, Koseki K, Nakanishi T, Sato K, Ninomiya K, Tomii D, et al. Evaluation of objective nutritional indexes as predictors of one-year outcomes after transcatheter aortic valve implantation. J Cardiol 2019;74:34–39.

    Article  Google Scholar 

  35. 35.

    Lee K, Ahn JM, Kang DY, Ko E, Kwon O, Lee PH, et al. Nutritional status and risk of all-cause mortality in patients undergoing transcatheter aortic valve replacement assessment using the geriatric nutritional risk index and the controlling nutritional status score. Clin Res Cardiol 2010;109:161–171.

    Article  Google Scholar 

  36. 36.

    Teker Açikel ME, Korkut AK. Impact of Controlling Nutritional Status Score (CONUT) and Prognostic Nutritional Index (PIN) on Patients Undergoing Coronary Artery Bypass Graft Surgery. Heart Surg Forum 2019;22:E294–297.

    Article  Google Scholar 

  37. 37.

    Saito A, Amiya E, Hatano M, Shiraishi Y, Nitta D, Minatsuki S, et al. Controlling Nutritional Status score as a predictive marker for patients with implantable left ventricular assist device. ASAIO J 2020;66:166–172.

    Article  Google Scholar 

  38. 38.

    Lehmann AB. Vulnerability to warfarin: could undernutrition be a predictor? Arch Intern Med 1997; 157:1385.

    CAS  Article  Google Scholar 

  39. 39.

    Harper P., Young L, Merriman E. Bleeding risk with dabigatran in the frail elderly. N Engl J Med 2012;366:864–866.

    CAS  Article  Google Scholar 

Download references


Researchers of the NONAVASC study; Vascular Risk Group of the Spanish Society of Internal Medicine. I. García-Polo, JC. Arévalo-Lorido, J. Portillo-Sánchez, I. Martínez-Moreno, C. de la Guerra-Acebal, C. Argüello-Martín, SI. Aranda-Sánchez, I. Novo-Veleiro, M. Pena-Seijo, F. Salgado-Ordoñez, JA. Vargas-Hitos, J. González-Moraleja, NR. Tobares-Carrasco, P. Freixas-Descarrega, I. Campodarve-Botet, C. Fernández-Capitán, LM. Palomar-Rodríguez, AB. Gómez-Belda, D. Chivite-Guillén, MA. Rico-Corral, JL. Hernández-Hernández, E. Coloma-Bazán, X. Sobrino-Martínez, J. Grandes-Ibáñez, M. Martín-Millán, R. Cuenca-Acevedo, JB. Pérez-Lorenz, A. de la Peña Fernández, G. López-Castellanos, E. Montero-Hernández, E. Calderón-Sandubete, C. Lahoz-Rallo, A. de los Santos-Moreno, JA. Martínez-Muradas, J. Alfonso-Megido, JI. Cuende-Melero, R. Cotos-Cancas, JJ. Tamarit-García, F. Bonilla-Rovira, A. Epalza-Bueno, M. Morales-Conejo, L. Manzano-Espinosa, S. FreireCastro, A. RodríguezGonzález, M. Menduiña-Guillén, A. López-Suárez, JF. Sánchez Muñoz-Torrero, MD. Martín-Escalante, JA. Ortiz-Minuesa, JC. Martínez-Acitores, MB. Alonso-Ortiz, D. Filella-Agulló, H. Ágreda-López, M. Romero-Jiménez, ME. Fernández-Pérez, JL. Díaz-Díaz, C. Pérez-Bocanegra, R. Martínez-Fernández, JA. Nieto-Rodríguez, J. Masferrer-Serra, L. Mérida-Rodrigo, JM. Varela-Aguilar, A. Mujal-Martínez, L. Castilla-Guerra, P. Castellanos-Llauger, G. Tiberio-López, E. Guevara-Sierra y J. Fernández-Pardo.


Funding: The NONAVASC study was funded by an unconditional grant from Bayer.

Author information





Authors contributions: Antonio Pose Reino, Francesc Formiga, Miguel Camafort, José María Cepeda Rodrigo, José María Mostaza, Carmen Suárez Fernández and Jesús Díez-Manglano designed the study. All authors participated in the data collection. Aranzazu Arenas Miquélez, Maria Angeles Requena Calleja and Jesús Díez-Manglano analyzed the data and drafted the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Jesús Díez-Manglano.

Ethics declarations

Conflicts of interest: The authors declare that they have no conflict of interest. Aranzazu Arenas Miquelez has no conflict of interest. María Ángeles Calleja Requena has no conflict of interest. Alejandra Gullón has no conflict of interest. Antonio Pose Reino has no conflict of interest. Françesc Formiga has no conflict of interest. Miguel Camafort has no conflict of interest. José María Cepeda Rodrigo has no conflict of interest. José María Mostaza has no conflict of interest. Carmen Suárez Fernández has no conflict of interest. Jesús Díez-Manglano has no conflict of interest.

Ethics approval The study was approved by the Ethics Committee for Clinical Research of University Hospital de la Princesa (Madrid, Spain).

Additional information

Consent to participate: All patients, or their relatives in the event of cognitive impairment, gave their written informed consent.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arenas Miquélez, A., Requena Calleja, M.A., Gullón, A. et al. Nutritional Risk and Mortality at One Year for Elderly Patients Hospitalized with Nonvalvular Atrial Fibrillation. NONAVASC Registry. J Nutr Health Aging (2020).

Download citation

Key words

  • Atrial fibrillation
  • nutrition
  • elderly
  • mortality
  • cohort study