The journal of nutrition, health & aging

, Volume 17, Issue 4, pp 378–384 | Cite as

Body mass index, lifestyles, physical performance and cognitive decline: The “Treviso Longeva (Trelong)” study

  • Maurizio GallucciEmail author
  • S. Mazzuco
  • F. Ongaro
  • E. Di Giorgi
  • P. Mecocci
  • M. Cesari
  • D. Albani
  • G. L. Forloni
  • E. Durante
  • G. B. Gajo
  • A. Zanardo
  • M. Siculi
  • L. Caberlotto
  • C. Regini



The relative contributions of risk factors, as body mass index (BMI), depression, chronic diseases, smoking, and lifestyles (as physical and performance activity, social contacts and reading habit) to cognitive decline in the elderly are unclear. We explored these variables in relation to 7-year cognitive decline in long-lived Italian elderly.


Secondary data analysis of a longitudinal study of a representative, age-stratified, population sample.


The TREVISO LONGEVA (TRELONG) Study, in Treviso, Italy.


120 men and 189 women, age 77 years and older (mean age 80.2 ± 6.9 years) survivors after seven years of follow up.


Cognitive decline measured as difference between Mini-Mental State Examination (MMSE) score in 2003 and in 2010; Body mass index (BMI), handgrip, Short Physical Performance Battery (SPPB) score, social contacts, reading habit, sight, hearing, schooling, mediterranean diet and multiple clinical and survey data recorded at baseline in 2003.


In separate univariate analyses, age, SPPB score < 5, depressive symptoms (GDS) and more comorbidities (CCI) were associated with greater cognitive decline. Otherwise higher BMI, higher handgrip, reading habit, non-deteriorated sight and hearing, and schooling were protective. In a final multivariate model, age and higher BMI were associated with greater cognitive decline while reading habits was protective. SPPB score < 5 tends, though weakly, to be associated with greater cognitive decline. These associations remained with multivariate adjustment for gender, schooling, Charlson co-morbidity index (CCI) and baseline MMSE.


Age and higher baseline BMI, independent of gender, and other confounding factors, are risk factors for cognitive decline. Reading habit plays a protective role seven years later among northern Italian adults aged 70 years or older. Low physical performance tends, though weakly, to be associated with greater cognitive decline.

Key words

Cognitive decline body mass index (BMI) physical performance lifestyles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferri CP, Prince M, Brayne C, Brodaty H et al., Global prevalence of dementia: a Delphi consensus study. Lancet 2005 dec 17;366(9503):2112–2117PubMedCrossRefGoogle Scholar
  2. 2.
    World Health Organization. World Health Report 2003 — Shaping the future. Geneva: WHO, 2003.Google Scholar
  3. 3.
    Gustafson DR, Rothenberg E, Blennow K, Steen B, Skoog I. An 18-year follow up of overweight and risk for Alzheimer’s disease. Arch Intern Med 2003;163:1524–1528.PubMedCrossRefGoogle Scholar
  4. 4.
    Kivipelto M, Ngandu T, Fratiglioni L, et al. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol 2005;62:1556–1560.PubMedCrossRefGoogle Scholar
  5. 5.
    Rosengren A, Skoog I, Gustafson D, Wilhelmsen L. Body mass index, other cardiovascular risk factors, and hospitalization for dementia. Arch Intern Med 2005;165:321–326.PubMedCrossRefGoogle Scholar
  6. 6.
    Whitmer RA, Gunderson EP, Barrett-Connor E, Quesenberry CP, Jr., Yaffe K. Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ 2005;330:1360–1364.PubMedCrossRefGoogle Scholar
  7. 7.
    Luchsinger JA, Patel B, Tang MX, Schupf N, Mayeux R. Measures of adiposity and dementia risk in elderly persons. Arch Neurol 2007;64:392–398.PubMedCrossRefGoogle Scholar
  8. 8.
    Stewart R, Masaki K, Xue QL, et al. A 32-year prospective study of change in body weight and incident dementia: the Honolulu-Asia Aging Study. Arch Neurol 2005;62:55–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Atti AR, Palmer K, Volpato S, Winblad B, De Ronchi D, Fratiglioni L. Late-life body mass index and dementia incidence: nine-year follow-up data from the Kungsholmen Project. J Am Geriatr Soc 2008;56:111–116.PubMedCrossRefGoogle Scholar
  10. 10.
    Barrett-Connor E, Edelstein SL, Corey-Bloom J, Wiederholt WC. Weight loss precedes dementia in community-dwelling older adults. J Am Geriatr Soc 1996;44:1147–1152.PubMedGoogle Scholar
  11. 11.
    Buchman AS, Wilson RS, Bienias JL, Shah RC, Evans DA, Bennett DA. Change in body mass index and risk of incident Alzheimer disease. Neurology 2005;65:892–897.PubMedCrossRefGoogle Scholar
  12. 12.
    Fitzpatrick AL, Kuller LH, Lopez OL, et al. Midlife and late-life obesity and the risk of dementia: cardiovascular health study. Arch Neurol 2009;66:336–342.PubMedCrossRefGoogle Scholar
  13. 13.
    Alfaro-Acha A, Al Snih S, Raji MA, Kuo YF, Markides KS, Ottenbacher KJ. Handgrip strength and cognitive decline in older Mexi-can Americans. J Gerontol A Biol Sci Med Sci. 2006;61(8):859–865.PubMedCrossRefGoogle Scholar
  14. 14.
    Alfaro-Acha A, Al Snih S, Raji MA, Markides KS, Ottenbacher KJ. Does 8-foot walk time predict cognitive decline in older Mexicans Americans? J Am Geriatr Soc. 2007;55(2):245–251.PubMedCrossRefGoogle Scholar
  15. 15.
    Inzitari M, Newman AB, Yaffe K, et al. Gait speed predicts decline in attention and psychomotor speed in older Adults: The Health Aging and Body Composition Study. Neuroepidemiology. 2007;29(3–4):156–162.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang L, Larson EB, Bowen JD, van Belle G. Performance-based physical function and future dementia in older people. Arch Intern Med. 2006;166(10):1115–1120.PubMedCrossRefGoogle Scholar
  17. 17.
    Marsili M, Marsiglia D: Tavole di mortalità della popolazione italiana per provincia e regione di residenza. Anno 1998, Roma, Servizio Popolazione Istruzione e Cultura, 2001Google Scholar
  18. 18.
    Gallucci M, Ongaro F, Bresolin F, et al. The Treviso Longeva (Trelong) study: a biomedical, demographic, economic and social investigation on people 70 years and over in a typical town of North-East of Italy. Arch Gerontol Geriatr 2007;44Suppl 1:173–192.PubMedCrossRefGoogle Scholar
  19. 19.
    Folstein MF, Folstein SE, McHugh PR: “Mini-Mental State” A practical method for grading the cognitive state of patients for the clinician. J Psychiatric Res 1975; 12:189–198CrossRefGoogle Scholar
  20. 20.
    Magni E, Binetti G, Bianchetti A, et al: Mini-mental state examination: a normative study in Italian elderly population. Eur J Neurol 1996; 3:1–5CrossRefGoogle Scholar
  21. 21.
    Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB, 1994. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. Biol. Sci. Med. Sci. 49, M85–M94.Google Scholar
  22. 22.
    Gallucci M, Ongaro F, Meggiolaro S et al., Factors related to disability: Evidence from the “Treviso Longeva (TRELONG) Study”, Archives of Gerontology and Geriatrics 52 (2011) 309–316PubMedCrossRefGoogle Scholar
  23. 23.
    Charlson, M.E., Pompei, P., Ales, K.L., McKenzie, C.R., 1987. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chron. Dis. 40, 373–383.PubMedCrossRefGoogle Scholar
  24. 24.
    Cleves, M.A., Sanchez, N., Draheim, M., 1997. Evaluation of two competing methods for calculating Charlson’s comorbidity index when analyzing short-term mortality using administrative data. J. Clin. Epidemiol. 50, 903–908.PubMedCrossRefGoogle Scholar
  25. 25.
    Singh, B., Bhaya, M., Stern, J., Roland, J.T., Zimbler, M., Rosenfeld, R.M., Har-El, G., Lucente, F.E., 1997. Validation of the Charlson comorbidity index in patients with head and neck cancer: a multi-institutional study. Laryngoscope 107, 1469–1475.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang, J.X., Iwashyna, T.J., Christakis, N.A., 1999. The performance of different lookback periods and sources of information for Charlson comorbidity adjustment in Medicare claims. Med. Care 37, 1128–1139.PubMedCrossRefGoogle Scholar
  27. 27.
    Schneeweiss, S., Maclure, M., 2000. Use of comorbidity scores for control of confounding in studies using administrative databases. Int. J. Epidemiol. 29, 891–898.PubMedCrossRefGoogle Scholar
  28. 28.
    Yesavage, J.A., Brink, T.L., Rose, T.L., Lum, O., Huang, V., Adey, M., Leirer, V.O., 1983. Development and validation of a geriatric depression screening scale: a preliminary report. J. Psychiatr. Res. 17, 37–49.CrossRefGoogle Scholar
  29. 29.
    Montorio, I., Izal, M., 1996. The Geriatric Depression Scale: a review of its development and utility. Int. Psychogeriatr. 8, 103–112.PubMedCrossRefGoogle Scholar
  30. 30.
    Gallucci, M., Antuono, P., Ongaro, F., Forloni, P.L., Albani, D., Amici, G.P., Regini, C., 2009. Physical activity, socialization and reading in the elderly over the age of seventy: What is the relation with cognitive decline? Evidence from “The Treviso Longeva (TRELONG) study” Arch. Gerontol. Geriatr. 48, 284–286.PubMedCrossRefGoogle Scholar
  31. 31.
    Rees, S., Harborne, J., 1984. Flavonoids and other phenolics of Cichorium and related members of the Lactueaceae (Compositae). Bot. J. Linn. Soc. 89, 313–319.CrossRefGoogle Scholar
  32. 32.
    Papetti, A., Daglia, M., Gazzani, G., 2002. Anti- and pro-oxidant activity of watersoluble compounds in Cichorium intybus var. Silvestre (Treviso red chicory). J. Pharmaceut. Biomed. Anal. 30, 939–945.CrossRefGoogle Scholar
  33. 33.
    Buckland, G., Bach, A., Serra-Majem, L., 2008. Obesity and the Mediterranean diet: a systematic review of observational and intervention studies. Obes. Rev. 9, 582–593.PubMedCrossRefGoogle Scholar
  34. 34.
    R Development Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07- 0, URL Scholar
  35. 35.
    Hedden T, Gabrieli JD: Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 2004, 5:87–96.PubMedCrossRefGoogle Scholar
  36. 36.
    Salthouse TA: Memory aging from 18 to 80. Alzheimer Dis Assoc Disord 2003, 17:162–167.PubMedCrossRefGoogle Scholar
  37. 37.
    Yakhno NN, Zakharov VV, Lokshina AB: Impairment of memory and attention in the elderly. Neurosci Behav Physiol 2007, 37:203–208.PubMedCrossRefGoogle Scholar
  38. 38.
    Royall DR, Palmer R, Chiodo LK, Polk MJ: Declining executive control in normal aging predicts change in functional status: The Freedom House Study. J Am Geriatr Soc 2004, 52:346–352.PubMedCrossRefGoogle Scholar
  39. 39.
    Coppin AK, Shumway-Cook A, Saczynski JS, Patel KV, Ble A, Ferrucci L, Guralnik JM: Association of executive function and performance of dualtask physical tests among older adults: analyses from the InChianti study. Age Ageing 2006, 35:619–624.PubMedCrossRefGoogle Scholar
  40. 40.
    Salthouse TA: The processing-speed theory of adult age differences in cognition. Psychol Rev 1996, 103:403–428.PubMedCrossRefGoogle Scholar
  41. 41.
    Cahn-Weiner DA, Malloy PF, Boyle PA, Marran M, Salloway S: Prediction of functional status from neuropsychological tests in community-dwelling elderly individuals. Clin Neuropsychol 2000, 14:187–195.PubMedCrossRefGoogle Scholar
  42. 42.
    Lee Y, Kim JH, Lee KJ, Han G, Kim JL: Association of cognitive status with functional limitation and disability in older adults. Aging Clin Exp Res 2005, 17:20–28.PubMedGoogle Scholar
  43. 43.
    Owsley C, McGwin G Jr: Association between visual attention and mobility in older adults. J Am Geriatr Soc 2004, 52:1901–1906.PubMedCrossRefGoogle Scholar
  44. 44.
    Katz MJ, Lipton RB, Hall CB, Zimmerman ME, Sanders AE, Verghese J, Dickson DW, Derby CA. Age-specific and Sex-specific Prevalence and Incidence of Mild Cognitive Impairment, Dementia, and Alzheimer Dementia in Blacks and Whites: A Report From the Einstein Aging Study. Alzheimer Dis Assoc Disord. 2011 Dec 7.Google Scholar
  45. 45.
    Whitmer, R.A., Gunderson, E.P., Quesenberry Jr., C.P., Zhou, J., Yaffe, K., 2007. Body mass index in midlife and risk of Alzheimer disease and vascular dementia. Curr. Alzheimer Res. 4, 103–109.PubMedCrossRefGoogle Scholar
  46. 46.
    Hayden, K., Zandi, P., Lyketsos, C., Khachaturian, A., Bastian, L., Charoonruk, G., Tschanz, J., Norton, M., Pieper, C., Munger, R., Breitner, J., Welsh-Bohmer, K., Cache County Investigators, 2006. Vascular risk factors for incident Alzheimer disease and vascular dementia: the Cache County study. Alzheimer Dis. Assoc. Disord. 20, 93–100.Google Scholar
  47. 47.
    Nourhashemi F, Deschamps V, Larrieu S, Letenneur L, Dartigues JF, Barberger-Gateau P. Body mass index and incidence of dementia: the PAQUID study. Neurology 2003;60:117–119.PubMedCrossRefGoogle Scholar
  48. 48.
    Chiang, C.J., Yip, P.K., Wu, S.C., Lu, C.S., Liou, C.W., Liu, H.C., Liu, C.K., Chu, C.H., Hwang, C.S., Sung, S.F., Hsu, Y.D., Chen, C.C., Liu, S.I., Yan, S.H., Fong, C.S., Chang, S.F., You, S.L., Chen, C.J., 2007. Midlife risk factors for subtypes of dementia: a nested case-control study in Taiwan. Am. J. Geriatr. Psychiatry 15, 762–771.PubMedCrossRefGoogle Scholar
  49. 49.
    Luchsinger, J.A., Patel, B., Tang, M.X., Schupf, N., Mayeux, R., 2007. Measures of adiposity and dementia risk in elderly persons. Arch. Neurol. 64, 392–398.PubMedCrossRefGoogle Scholar
  50. 50.
    Buchman, A.S., Wilson, R.S., Bienias, J.L., Shah, R.C., Evans, D.A., Bennett, D.A., 2005. Change in body mass index and risk of incident Alzheimer disease. Neurology 65, 892–897.PubMedCrossRefGoogle Scholar
  51. 51.
    Faxen-Irving, G., Basun, H., Cederholm, T., 2005. Nutritional and cognitive relationships and longterm mortality in patients with various dementia disorders. Age Ageing 34, 136–141.PubMedCrossRefGoogle Scholar
  52. 52.
    Hogan, D.B., Ebly, E.M., Rockwood, K., 1997. Weight, blood pressure, osmolarity, and glucose levels across various stages of Alzheimer’s disease and vascular dementia. Dement. Geriatr. Cogn. Disord. 8, 147–151.PubMedCrossRefGoogle Scholar
  53. 53.
    Knopman, D.S., Edland, S.D., Cha, R.H., Petersen, R.C., Rocca, W.A., 2007. Incident dementia in women is preceded by weight loss by at least a decade. Neurology 69, 739–746.PubMedCrossRefGoogle Scholar
  54. 54.
    White, H., Pieper, C., Schmader, K., Fillenbaum, G., 1996. Weight change in Alzheimer’s disease. J. Am. Geriatr. Soc. 44, 265–272.PubMedGoogle Scholar
  55. 55.
    White, H., Pieper, C., Schmader, K., 1998. The association of weight change in Alzheimer’s disease with severity of disease and mortality: a longitudinal analysis. J. Am. Geriatr. Soc. 46, 1223–1227.PubMedGoogle Scholar
  56. 56.
    Dey DK, Rothenberg E, Sundh V, et al: Height and body weight in the elderly. I. A 25- year longitudinal study of a population aged 70 to 95 years. Eur J Clin Nutr 1999; 53:905–914PubMedCrossRefGoogle Scholar
  57. 57.
    Flicker L, McCaul KA, Hankey GJ, et al: Body mass index and survival in men and women aged 70 to 75. J Am Geriatr Soc 2010; 58:234–241PubMedCrossRefGoogle Scholar
  58. 58.
    Gustafson, D., Mazzuco, S., Gallucci, M., et al.: Body mass index, cognition, disability, APOE genotype and mortality: the “TREVISO LONGEVA (TRELONG)” Study. Am J Geriatr Psychiatry, 2011 Oct 8Google Scholar
  59. 59.
    Gustafson, D.: A life course of adiposity and dementia. Eur J Pharmacol 2008; 585:163–175PubMedCrossRefGoogle Scholar
  60. 60.
    Ross, M.G., Desai, M., Khorram, O., McKnight, R.A., Lane, R.H., Torday, J., 2007. Gestational programming of offspring obesity: a potential contributor to Alzheimer’s disease. Curr. Alzheimer Res. 4, 213–217.PubMedCrossRefGoogle Scholar
  61. 61.
    Kalmijn S, Foley D, White L, et al. Metabolic cardiovascular syndrome and risk of dementia in Japanese-American elderly men: the Honolulu-Asia aging study. Arterioscler Thromb Vasc Biol. 2000;20:2255–2260.PubMedCrossRefGoogle Scholar
  62. 62.
    deLeon, M.J., George, A.E., Golomb, J., Tarshish, C., Convit, A., Kluger, A., Santi, S., McRae, T., Ferris, S.H., Reisberg, B., Ince, C., Rusinek, H., Bobinski, M., Quinn, B., Miller, D.C., Wisniewski, H.M., 1996. Frequency of hippocampal formation atrophy in normal aging and Alzheimer’s disease. Neurobiol. Aging 18, 1–11.CrossRefGoogle Scholar
  63. 63.
    Visser, P.J., Verhey, F.R.J., Hofman, P.A.M., Scheltens, P., Jolles, J., 2002. Medial temporal lobe atrophy predicts Alzheimer’ disease in patients with minor cognitive impairment. J. Neurol. Neurosur. Psychiatr. 72, 491–497.Google Scholar
  64. 64.
    Gustafson, D., Lissner, L., Bengtsson, C., Björkelund, C., Skoog, I., 2004. A 24-year follow-up of body mass index and cerebral atrophy. Neurology 63, 1876–1881.PubMedCrossRefGoogle Scholar
  65. 65.
    Ward, M.A., Carlsson, C.M., Trivedi, M.A., Sager, M.A., Johnson, S.C., 2005. The effect of body mass index on global brain volume in middle-aged adults: a cross sectional study. BMC Neurol. 5, 23–29.PubMedCrossRefGoogle Scholar
  66. 66.
    Wolf-Klein GP, Silverstone FA. Weight loss in Alzheimer’s disease: an international review of the literature. Int Psychogeriatr 1994;6:135–142.PubMedCrossRefGoogle Scholar
  67. 67.
    Wang GJ, Volkow ND, Logan J, et al. Brain dopamine and obesity. Lancet 2001;357:354–357.PubMedCrossRefGoogle Scholar
  68. 68.
    Shatenstein B, Kergoat MJ, Nadon S. Weight change, nutritional risk and its determinants among cognitively intact and demented elderly Canadians. Can J Public Health 2001;92:143–149.PubMedGoogle Scholar
  69. 69.
    Payette H, Kergoat MJ, Shatenstein B, Boutier V, Nadon S. Validity of self-reported height and weight estimates in cognitively-intact and impaired elderly individuals. J Nutr Health Aging 2000;4:223–228.PubMedGoogle Scholar
  70. 70.
    Cronin-Stubbs D, Beckett LA, Scherr PA, et al. Weight loss in people with Alzheimer’s disease: a prospective population based analysis. Br Med J 1997;314:178–179.CrossRefGoogle Scholar
  71. 71.
    White H, Pieper C, Schmader K, Fillenbaum G. A longitudinal analysis of weight change in Alzheimer’s disease. J Am Geriatr Soc 1997;45:531–532.PubMedGoogle Scholar
  72. 72.
    Salvà A, Andrieu S, Fernandez E, Schiffrin EJ, Moulin J, Decarli B, Rojano-i-Luque X, Guigoz Y, Vellas B; NutriAlz group. Health and nutrition promotion program for patients with dementia (NutriAlz): cluster randomized trial. J Nutr Health Aging. 2011;15(10):822–830.PubMedCrossRefGoogle Scholar
  73. 73.
    Gillette Guyonnet S, Abellan Van Kan G, Alix E, Andrieu S, Belmin J, Berrut G, Bonnefoy M, Brocker P, Constans T, Ferry M, Ghisolfi-Marque A, Girard L, Gonthier R, Guerin O, Hervy MP, Jouanny P, Laurain MC, Lechowski L, Nourhashemi F, Raynaud-Simon A, Ritz P, Roche J, Rolland Y, Salva T, Vellas B; International Academy on Nutrition and Aging Expert Group. IANA (International Academy on Nutrition and Aging) Expert Group: weight loss and Alzheimer’s disease. J Nutr Health Aging. 2007 Jan–Feb;11(1):38–48.PubMedGoogle Scholar
  74. 74.
    Andrieu S, Reynish W, Nourhashemi F et al. Nutritional risk factors for institutional placement in Alzheimer’s disease after one year follow-up. J Nutr Health Aging 2001; 5: 113–117PubMedGoogle Scholar
  75. 75.
    Inelmen EM, Sergi G, Coin A, Girardi A and Manzato E. An open-ended question: Alzheimer’s disease and involuntary weight loss: which comes first? Aging Clin Exp Res, 2010, Vol. 22, No 3, 192–197.PubMedGoogle Scholar
  76. 76.
    Uchida S, Kawashima R: Reading and solving arithmetic problems improves cognitive functions of normal aged people: a randomized controlled study. Age (Dordr) 2008, 30:21–29.CrossRefGoogle Scholar
  77. 77.
    Nouchi R, Taki Y, Takeuchi H, et al. Beneficial effects of reading aloud and solvingsimple arithmetic calculations (learning therapy) on a wide range of cognitive functions in the healthy elderly: study protocol for a randomized controlled trial. Trials 2012, 13:32PubMedCrossRefGoogle Scholar
  78. 78.
    Jefferson AL, Gibbons LE, Rentz DM, Carvalho JO, Manly J, Bennett DA and Jones R N (2011), A Life Course Model of Cognitive Activities, Socioeconomic Status, Education, Reading Ability, and Cognition. Journal of the American Geriatrics Society, 59: 1403–1411.PubMedCrossRefGoogle Scholar
  79. 79.
    Lindenberger U, Baltes P. Sensory functioning and intelligence in old age: a strong connection. Psychol Aging 1994;9:339–355.PubMedCrossRefGoogle Scholar
  80. 80.
    Christensen H, Mackinnon AJ, Korten A, Jorm AF. The “Common Cause Hypothesis” of cognitive aging: evidence for not only a common factor but also specific associations of age with vision and grip strength in a cross-sectional analysis. Psychol Aging 2001;16:588–599.PubMedCrossRefGoogle Scholar
  81. 81.
    Anstey KJ, Smith GA. Interrelationships among biological markers of aging, health, activity, acculturation and cognitive performance in late adulthood. Psychol Aging 1999;14:605–618.PubMedCrossRefGoogle Scholar
  82. 82.
    Guralnik JM, Ferrucci L, Penninx BWJH, Kasper JD, Leveille SG, Bandeen-Roche K, Fried LP. New and worsening conditions and change in physical and cognitive peformance during weekly evaluations over 6 months: The Women’s Health and Aging Study. J Gerontol 1999;54A:M410–M422.Google Scholar
  83. 83.
    Kuh D, Bassey EJ, Butterworth S, Hardy R, Wadsworth MEJ. on behalf of the Musculoskeletal study team. Grip strength, postural control, and functional leg power in a representative cohort of British men and women; associations with physical activity, health status, and socioeconomic conditions. J Gerontol Med Sci 2005;60A:224–231.CrossRefGoogle Scholar
  84. 84.
    Richards M. Cognitive links across the lifecourse and implications for health in later life. Age Ageing 2003;29:477–478.CrossRefGoogle Scholar
  85. 85.
    Richards M, Sacker A. Lifetime antecedents of cognitive reserve. J Clin Exp Neuropsychol 2003;25:614–624.PubMedCrossRefGoogle Scholar
  86. 86.
    Atkinson HH, Rapp SR, Williamson JD, Lovato J, Absher JR, Gass M, Henderson VW, Johnson KC, Kostis JB, Sink KM, Mouton CP, Ockene JK, Stefanick ML, Lane DS, Espeland MA. The relationship between cognitive function and physical performance in older women: results from the women’s health initiative memory study. J Gerontol A Biol Sci Med Sci. 2010 Mar;65(3):300–306. Epub 2009 Sep 29.PubMedCrossRefGoogle Scholar
  87. 87.
    Angevaren M, Aufdemkampe G, Verhaar HJ, Aleman A, Vanhees L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. 2008 Jul 16;(3):CD005381.Google Scholar
  88. 88.
    Teri L, Logsdon RG, McCurry SM. Exercise interventions for dementia and cognitive impairment: the Seattle Protocols. J Nutr Health Aging. 2008 Jun–Jul;12(6):391–394.PubMedCrossRefGoogle Scholar
  89. 89.
    Geda YE, Roberts RO, Knopman DS et al., Physical exercise, aging, and mild cognitive impairment: a population-based study. Arch Neurol. 2010 Jan;67(1):80–86.PubMedCrossRefGoogle Scholar
  90. 90.
    Liu-Ambrose T, Eng JJ, Boyd LA, Jacova C, Davis JC, Bryan S, Lee P, Brasher P, Hsiung GY. Promotion of the mind through exercise (PROMoTE): a proof-of-concept randomized controlled trial of aerobic exercise training in older adults with vascular cognitive impairment. BMC Neurol. 2010 Feb 17;10:14.PubMedCrossRefGoogle Scholar
  91. 91.
    Schneider BC, Lichtenberg PA. Executive ability and physical performance in urban Black older adults. Archives of Clinical Neuropsychology 23 (2008) 593–601PubMedCrossRefGoogle Scholar
  92. 92.
    Verghese J, Wang C, Lipton RB, Holtzer R, Xue X. Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neu.rosurg Psychiatry. 2007;78(9):929–935.CrossRefGoogle Scholar
  93. 93.
    Buchman AS, Wilson RS, Boyle PA, Bienias JL, Bennett DA. Grip strength and the risk of incident Alzheimer’s disease. Neuroepidemiol.ogy. 2007;29(1–2):66–73.CrossRefGoogle Scholar
  94. 94.
    Verghese J, Lipton RB, Hall CB, Kuslansky G, Katz MJ, Buschke H. Abnormality of gait as a predictor of non-Alzheimer’s dementia. N Engl J Med. 200228;347(22):1761–1768.PubMedCrossRefGoogle Scholar
  95. 95.
    Marquis S, Moore MM, Howieson DB, et al. Independent predictors of cognitive decline in healthy elderly persons. Arch Neurol. 2002;59(4):601–606.PubMedCrossRefGoogle Scholar
  96. 96.
    Louis ED, Tang MX, Mayeux R. Parkinsonian signs in older people in a community-based study: risk of incident dementia. Arch Neurol. 2004;61(8):1273–1276.PubMedCrossRefGoogle Scholar
  97. 97.
    Waite LM, Grayson DA, Piguet O, Creasey H, Bennett HP, Broe GA. Gait slowing as a predictor of incident dementia: 6-year longitudinal data from the Sydney Older Persons Study. J Neurol Sci. 2005;229–230:89PubMedCrossRefGoogle Scholar
  98. 98.
    Abellan van Kan G, Rolland Y, Andrieu S, Bauer J, Beauchet O, Bonnefoy M, Cesari M, Donini LM, Gillette Guyonnet S, Inzitari M, Nourhashemi F, Onder G, Ritz P, Salva A, Visser M, Vellas B. Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force. J Nutr Health Aging. 2009 Dec;13(10):881–889.PubMedCrossRefGoogle Scholar
  99. 99.
    Guralnik, J M, Ferrucci, L, Simonsick, E M, Salive, M E, & Wallace, R B (1995). Lowerextremity function in persons over the age of 70 years as a predictor of subsequent disability. The New England Journal of Medicine, 332(9), 556–561.PubMedCrossRefGoogle Scholar
  100. 100.
    Ferrer E., Salthouse T.A., Stewart W.F., Schwartz B.S. (2004) Modeling age and retest processes in longitudinal studies of cognitive abilities. Psychology and Aging, 19(2), 243–259.PubMedCrossRefGoogle Scholar
  101. 101.
    Mazzonna F. and Peracchi F. (2009) Aging, cognitive abilities and retirement in Europe. CEIS Tor Vergata Research Paper Series, vol. 7, Issue 5, n. 152.Google Scholar
  102. 102.
    Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J. 2012 May;42(5):484–491.PubMedCrossRefGoogle Scholar
  103. 103.
    Sharp SI, Aarsland D, Day S, Sonnesyn H, Ballard C. Hypertension is a potential risk factor for vascular dementia: systematic review. Int J Geriatr Psychiatry. 2011;26:661–669PubMedCrossRefGoogle Scholar

Copyright information

© Serdi and Springer-Verlag France 2013

Authors and Affiliations

  • Maurizio Gallucci
    • 1
    • 9
    • 10
    Email author
  • S. Mazzuco
    • 2
  • F. Ongaro
    • 2
  • E. Di Giorgi
    • 3
  • P. Mecocci
    • 4
  • M. Cesari
    • 5
  • D. Albani
    • 6
  • G. L. Forloni
    • 6
  • E. Durante
    • 7
  • G. B. Gajo
    • 7
  • A. Zanardo
    • 8
    • 9
  • M. Siculi
    • 8
  • L. Caberlotto
    • 8
  • C. Regini
    • 9
  1. 1.Cognitive Impairment CentreGeneral Hospital of TrevisoTrevisoItaly
  2. 2.Department of Statistics University of PadovaPadovaItaly
  3. 3.Territorial Health Services of TrevisoTrevisoItaly
  4. 4.Institute of Gerontology and GeriatricsUniversity HospitalPerugiaItaly
  5. 5.Institut du VieillissementUniversité de ToulouseToulouseFrance
  6. 6.Department of Neuroscience“Mario Negri” Institute for Pharmacological ResearchMilanItaly
  7. 7.Transfusional Medicine DepartmentGeneral Hospital of TrevisoTrevisoItaly
  8. 8.Clinical Pathology DepartmentGeneral Hospital of TrevisoTrevisoItaly
  9. 9.FORGEI, Interdisciplinary Geriatric Research FoundationTrevisoItaly
  10. 10.Cognitive Impairment CentreGeneral Hospital of TrevisoTrevisoItaly

Personalised recommendations