Bacillus Toyonensis BCT-7112T Spores as Parenteral Adjuvant of BoHV-5 Vaccine in a Murine Model

Abstract

Bacterial spores of the genus Bacillus are being evaluated as adjuvant molecules capable of improving the immune response to vaccines. In this study, we investigate whether subcutaneously administered spores of B. toyonensis BCT-7112T could enhance a vaccine immune response in mice. Three groups of mice were subcutaneously vaccinated on day 0 and received a booster on day 21 of the experiment, with the following vaccine formulations: 40 µg of recombinant glycoprotein D (rgD) from bovine herpesvirus type 5 (BoHV-5) adsorbed in 10% aluminum hydroxide (alum) without B. toyonensis spores (group 1) and B. toyonensis (1 × 106 viable spores) + 40 µg of rgD adsorbed in 10% alum (group 2); and B. toyonensis (1 × 106 viable spores) without rgD (group 3). Group 2 showed significantly higher titers (P < 0.05) of total specific serum IgG, IgG2a, and neutralizing antibodies, when compared with the groups 1 and 3. A significantly higher (P < 0.05) transcription level of cytokines IL-4, IL-12, and IFN-γ was observed in splenocytes from mice that received the B. toyonensis spores in the vaccine formulation. In addition, stimulation of the macrophage-like cell line RAW264.7 with spores of B. toyonensis markedly enhanced the cell proliferation and mRNA transcription levels of IL-4, and IL-12 cytokines in these cells. Our findings indicated that the subcutaneous administration of B. toyonensis BCT-7112T spores enhanced the humoral and cellular immune response against BoHV-5 in mice.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. 1.

    Cutting SM (2011) Bacillus probiotics. Food Microbiol 28(2):214–220. https://doi.org/10.1016/j.fm.2010.03.007

    Article  PubMed  Google Scholar 

  2. 2.

    Lambrecht BN, Kool M, Willart MA, Hammad H (2009) Mechanism of action of clinically approved adjuvants. Curr Opin Immunol 21(1):23–29. https://doi.org/10.1016/j.coi.2009.01.004

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Reed SG, Bertholet S, Coler RN, Friede M (2009) New horizons in adjuvants for vaccine development. Trends Immunol 30(1):23–32. https://doi.org/10.1016/j.it.2008.09.006

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Montomoli E, Piccirella S, Khadang B, Mennitto E, Camerini R, De Rosa A (2011) Current adjuvants and new perspectives in vaccine formulation. Expert Rev Vaccines 10(7):1053–1061. https://doi.org/10.1586/erv.11.48

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Ricca E, Baccigalupi L, Cangiano G, Felice M, Isticato R (2014) Mucosal vaccine delivery by non-recombinant spores of Bacillus subtilis. Microb Cell Fact 13:1–9. https://doi.org/10.1186/s12934-014-0115-2

    CAS  Article  Google Scholar 

  6. 6.

    Barnes AGC, Cerovic V, Hobson PS, Klavinskis LS (2007) Bacillus subtilis spores: a novel microparticle adjuvant which can instruct a balanced Th1 and Th2 immune response to specific antigen. Eur J Immunol 37(6):1538–1547. https://doi.org/10.1002/eji.200636875

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Huang J, Hong HA, Tong HV, Hoang TH, Brisson A, Cutting SM (2010) Mucosal delivery of antigens using adsorption to bacterial spores. Vaccine 28(4):1021–1030. https://doi.org/10.1016/j.vaccine.2009.10.127

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    de Souza RD, Batista MT, Luiz WB, Cavalcante RCM, Amorim JH, Bizerra RSP, Martins EG, Ferreira LCS (2014) Bacillus subtilis spores as vaccine adjuvants: further insights into the mechanisms of action. PLoS One 9(1):e87454. https://doi.org/10.1371/journal.pone.0087454

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Vogel FSF, Caron L, Flores EF, Weiblen R, Winkelmann ER, Mayer SV, Bastos RG (2003) Distribution of bovine herpesvirus type 5 DNA in the central nervous systems of latently, experimentally infected calves. J Clin Microbiol 41(10):4512–4520. https://doi.org/10.1128/JCM.41.10.4512-4520.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Campos FS, Dezen D, Antunes DA, Santos HF, Arantes TS, Cenci A, Gomes F, Lima FES, Brito WMED, Filho HCK, Batista HBCR, Spilki FR, Franco AC, Rijsewijk FAM, Roehe PM (2011) Efficacy of an inactivated, recombinant bovine herpesvirus type 5 (BoHV-5) vaccine. Vet Microbiol 148(1):18–26. https://doi.org/10.1016/j.vetmic.2010.08.004

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Dummer LA, Leite FPL, Van Den Hurk SVDL (2014) Bovine herpesvirus glycoprotein D: a review of its structural characteristics and applications in vaccinology. Vet Res 45(1):111. https://doi.org/10.1186/s13567-014-0111-x

    CAS  Article  Google Scholar 

  12. 12.

    Babiuk LA, Van Drunen Littel-Van Den Hurk S, Tikoo SK (1996) Immunology of bovine herpesvirus 1 infection. Vet Microbiol 53(1–2):31–42. https://doi.org/10.1016/S0378-1135(96)01232-1

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Varela APM, Holz CL, Cibulski SP, Teixeira TF, Antunes DA, Franco AC, Roehe LR, Oliveira MT, Campos FS, Dezen D, Cenci A, Brito WD, Roehe PM (2010) Neutralizing antibodies to bovine herpesvirus types 1 (BoHV-1) and 5 (BoHV-5) and its subtypes. Vet Microbiol 142(3–4):254–260. https://doi.org/10.1016/j.vetmic.2009.10.016

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Jiménez G, Urdiain M, Cifuentes A, López-lópez A, Blanch AR, Tamames J, Kämpfer P, Kolstø A, Ramón D, Rosselló-móra R, Martínez JF, Codo FM (2013) Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations. Syst Appl Microbiol 36(6):383–391. https://doi.org/10.1016/j.syapm.2013.04.008

  15. 15.

    Kantas D, Papatsiros VG, Tassis PD, Giavasis I, Bouki P, Tzika ED (2015) A feed additive containing Bacillus toyonensis (Toyocerin®) protects against enteric pathogens in postweaning piglets. J Appl Microbiol 118(3):727–738. https://doi.org/10.1111/jam.12729

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Williams LD, Burdock GA, Jiménez G, Castillo M (2009) Literature review on the safety of Toyocerin, a non-toxigenic and non-pathogenic Bacillus cereus var. toyoi preparation. Regul Toxicol Pharmacol 55(2):236–246. https://doi.org/10.1016/j.yrtph.2009.07.009

  17. 17.

    Roos TB, de Lara AP SS, Dummer LA, Fischer G, Leite FPL (2012) The immune modulation of Bacillus cereus var. Toyoi in mice immunized with experimental inactivated Bovine Herpesvirus Type 5 vaccine. Vaccine 30(12):2173–2177. https://doi.org/10.1016/j.vaccine.2012.01.007

  18. 18.

    Santos FDS, Menegon YA, Piraine REA, Rodrigues PRC, Cunha RC, Leite FPL (2018) Bacillus toyonensis improves immune response in the mice vaccinated with recombinant antigen of bovine herpesvirus type 5. Benef Microbes 9(1):133–142. https://doi.org/10.3920/BM2017.0021

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Santos FDS, Mazzoli A, Maia AR, Saggese A, Isticato R, Leite F, Iossa S, Ricca E, Baccigalupi L (2020) A probiotic treatment increases the immune response induced by the nasal delivery of spore-adsorbed TTFC. Microb Cell Fact 19(1):42. https://doi.org/10.1186/s12934-020-01308-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Yousten AA (1984) Bacillus sphaericus: microbiological factors related to its potential as a mosquito larvicide. Adv Biotechnol Processes 3:315–343

    CAS  PubMed  Google Scholar 

  21. 21.

    Tavares MB, de Souza RD, Luiz WB, Cavalcante RCM, Casaroli C, Martins EG, Ferreira RCC, Ferreira LCS (2013) Bacillus subtilis endospores at high purity and recovery yields: optimization of growth conditions and purification method. Curr Microbiol 66(3):279–285. https://doi.org/10.1007/s00284-012-0269-2

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Dummer LA, Conceição FR, Nizoli LQ, de Moraes CM, Rocha AR, de Souza LL, Roos T, Vidor T, Leite FPL (2009) Cloning and expression of a truncated form of envelope glycoprotein D of bovine herpesvirus type 5 in methylotrophic yeast Pichia pastoris. J Virol Methods 161(1):84–90. https://doi.org/10.1016/j.jviromet.2009.05.022

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Dummer LA, Araujo IL, Finger PF, dos Santos AG, da Rosa MC, Conceição FR, Fischer G, van Drunen Littel-van den Hurk S, Leite FPL (2014) Immune responses of mice against recombinant bovine herpesvirus 5 glycoprotein D. Vaccine 32(21):2413–2419. https://doi.org/10.1016/j.vaccine.2014.03.011

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Fischer G, Conceição FR, Leite FPL, Dummer LA, Vargas GDA, Hübner SO, Dellagostin OA, Paulino N, Paulino AS, Vidor T (2007) Immunomodulation produced by a green propolis extract on humoral and cellular responses of mice immunized with SuHV-1. Vaccine 25(7):1250–1256. https://doi.org/10.1016/j.vaccine.2006.10.005

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Cardona PJ, Gordillo S, Díaz J, Tapia G, Amat I, Pallarés Á, Vilaplana C, Ariza A, Ausina V (2003) Widespread bronchogenic dissemination makes DBA/2 mice more susceptible than C57BL/6 mice to experimental aerosol infection with Mycobacterium tuberculosis. Infect Immun 71(10):5845–5854. https://doi.org/10.1128/IAI.71.10.5845-5854.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele JWC (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797

  27. 27.

    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  Article  Google Scholar 

  28. 28.

    Schierack P, Wieler LH, Taras D, Herwig V, Tachu B, Hlinak A, Schmidt MFG, Scharek L (2007) Bacillus cereus var. toyoi enhanced systemic immune response in piglets. Vet Immunol Immunopathol 118(1−2):1−11. https://doi.org/10.1016/j.vetimm.2007.03.006

  29. 29.

    Chieppa M, Rescigno M, Huang AYC, Germain RN (2006) Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 203(13):2841–2852. https://doi.org/10.1084/jem.20061884

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Duc LH, Hong HA, Fairweather N, Ricca E, Cutting SM (2003) Bacterial spores as vaccine vehicles. Infect Immun 71(5):2810–2818. https://doi.org/10.1128/IAI.71.5.2810-2818.2003

    CAS  Article  PubMed Central  Google Scholar 

  31. 31.

    Lebeer S, Vanderleyden J, Keersmaecker SCJ (2010) Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8:171–184. https://doi.org/10.1038/nrmicro2297

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Hong HA, Duc LH, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835. https://doi.org/10.1016/j.femsre.2004.12.001

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Aps LRMM, Diniz MO, Porchia BFMM, Sales NS, Moreno ACR, Ferreira LCS (2015) Bacillus subtilis spores as adjuvants for DNA vaccines. Vaccine 33:2328–2334. https://doi.org/10.1016/j.vaccine.2015.03.043

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Cerovic V, Jenkins CD, Barnes AGC, Milling SWF, MacPherson GG, Klavinskis LS (2009) Hyporesponsiveness of intestinal dendritic cells to TLR stimulation is limited to TLR4. J Immunol 182:2405–2415. https://doi.org/10.4049/jimmunol.0802318

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Xu X, Huang Q, Mao Y, Cui Z, Li Y, Huang Y, Rajput IR, Yu D, Li W (2012) Immunomodulatory effects of Bacillus subtilis (natto) B4 spores on murine macrophages. Microbiol Immunol 56:817–824. https://doi.org/10.1111/j.1348-0421.2012.00508.x

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604. https://doi.org/10.1016/j.immuni.2010.05.007

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, MacDonald AS, Allen JE (2011) Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332:1284–1288. https://doi.org/10.1126/science.1204351

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Grohmann U, Belladonna ML, Vacca C, Bianchi R, Fallarino F, Orabona C, Fioretti MC, Puccetti P (2001) Positive regulatory role of IL-12 in macrophages and modulation by IFN-γ. J Immunol 167:221–227. https://doi.org/10.4049/jimmunol.167.1.221

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    United States Department of Agriculture (USDA) (2005) Animal and Plant Health Inspection Service. pp. 683–684

  40. 40.

    Coutelier JT, Van der Logt JTM, Heessen FW, Warnier G, Van Snick J (1987) IgG2a restriction of murine antibodies elicited by viral infections. J Exp Med 165:64–69

    CAS  Article  Google Scholar 

  41. 41.

    Markine-Goriaynoff D, Coutelier JP (2002) Increased efficacy of the immunoglobulin G2a subclass in antibody-mediated protection against lactate dehydrogenase-elevating virus-induced polioencephalomyelitis revealed with switch mutants. J Virol 76:432–435. https://doi.org/10.1128/JVI.76.1.432-435.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Klasse PJ (2014) Neutralization of virus infectivity by antibodies : old problems in new perspectives. Adv Biol 2014(2014):157895. https://doi.org/10.1155/2014/157895

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Giroux M, Schmidt M, Descoteaux A (2003) IFN-γ-induced MHC class II expression: transactivation of class II transactivator promoter IV by IFN regulatory factor-1 is regulated by protein kinase C-α. J Immunol 171:4187–4194. https://doi.org/10.4049/jimmunol.171.8.4187

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146. https://doi.org/10.1038/nri1001

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Finkelman FD, Holmes J, Katona IM, Urban JF, Beckmann MP, Park LS, Schooley KA, Coffman RL, Mosmann TR, Paul WE (1990) Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol 8:303–333. https://doi.org/10.1146/annurev.iy.08.040190.001511

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Paul WE, Zhu J, Yamane H (2010) Determination of effector CD4 T cell populations. Annu Rev Immunol 28:445–489. https://doi.org/10.1038/nri2735

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financed in part by the Coordination for the Improvement of Higher Education Personnel (CAPES)-Brazil-Finance Code 001 and the National Council of Technological and Scientific Development (CNPq) for Leite FPL scholarship.

Author information

Affiliations

Authors

Contributions

Santos FDS contributed to experiment design, performed most of the experiments, and wrote most of the manuscript. Maubrigades LR contributed to the performance of most of the experiments, Gonçalves VS contributed to the ELISA and qPCR reactions, Franz HC contributed to the cell culture, Rodrigues PRC contributed to the virus neutralization test, Cunha RC contributed to the experiment design and analyses of results, and Leite FPL designed the study, analysed the results, and wrote the manuscript. All authors of this paper have approved the submission of this manuscript.

Corresponding author

Correspondence to Fábio Pereira Leivas Leite.

Ethics declarations

Ethical Approval

Mice used in this study were provided by the animal unit at Federal University of Pelotas (UFPel). All protocols and procedures were reviewed and approved by the Ethics Committee on Animal Experimentation (CEEA No. 1981) of the UFPel. The CEEA of UFPel is accredited by the Brazilian National Council for the Control of Animal Experimentation (CONCEA).

Ethical Statement

All authors of this paper have approved the submission of this manuscript. The contents of this manuscript have not been copyrighted or published previously.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santos, F.D.S., Maubrigades, L.R., Gonçalves, V.S. et al. Bacillus Toyonensis BCT-7112T Spores as Parenteral Adjuvant of BoHV-5 Vaccine in a Murine Model. Probiotics & Antimicro. Prot. (2021). https://doi.org/10.1007/s12602-021-09753-z

Download citation

Keywords

  • Spore
  • Bacillus
  • Vaccine
  • Immunomodulation
  • Cytokines