Molecular and Functional Characterization of an Anti-lipopolysaccharide Factor Mm-ALF from Speckled Shrimp Metapenaeus monoceros

Abstract

Anti-lipopolysaccharide factors (ALFs) are antimicrobial peptides of approximately 100 amino acid residues with a broad spectrum of antimicrobial activity. It is an amphipathic peptide with an N-terminal hydrophobic region and a lipopolysaccharide binding domain (LBD). In the present study, we report an isoform of the anti-lipopolysaccharide factor (Mm-ALF) from the speckled shrimp, Metapenaeus monoceros. A 359 bp cDNA encoded 119 amino acids, and the sequence showed 99.16% similarity to ALF from the shrimp Fenneropenaeus indicus. The mature peptide of 94 amino acids has a net charge of +8, molecular weight 10.62 kDa, and pI 10.11. The mature peptide Mm-ALF was recombinantly expressed in E. coli Rosetta-gami cells, and the peptide was isolated and purified. The rMm-ALF exhibited notable antibacterial activity against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Escherichia coli, Edwardsiella tarda, Aeromonas hydrophila, Pseudomonas aeruginosa, Vibrio parahaemolyticus, Vibrio harveyi, Vibrio alginolyticus, Vibrio proteolyticus, Vibrio cholerae and Vibrio fluvialis) bacteria.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. 1.

    Rosa RD, Barracco MA (2010) Antimicrobial peptides in crustaceans. Invertebr Surviv J 7(2):262–284

    Google Scholar 

  2. 2.

    Boone L (1931) A collection of anomuran and macruran Crustacea from the Bay of Panama and the fresh waters of the Canal Zone. Bulletin of the AMNH 63

  3. 3.

    Tanaka S, Nakamura T, Morita T, Iwanaga S (1982) Limulus anti-LPS factor: an anticoagulant which inhibits the endotoxin-mediated activation of Limulus coagulation system. Biochem Biophys Res Commun 105(2):717–723

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Li S, Li F (2020) The Anti-lipopolysaccharide Factors in Crustaceans. In: Hoeger U, Harris J (eds) Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and other Body Fluid Proteins. Subcell Biochem 94:63–80 https://doi.org/10.1007/978-3-030-41769-7

  5. 5.

    Ponprateep S, Tharntada S, Somboonwiwat K, Tassanakajon A (2012) Gene silencing reveals a crucial role for anti-lipopolysaccharide factors from Penaeus monodon in the protection against microbial infections. Fish Shellfish Immunol 32:26–34

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Supungul P, Klinbunga S, Pichyangkura R, Hirono I, Aoki T, Tassanakajon A (2004) Antimicrobial peptides discovered in the black tiger shrimp Penaeus monodon using the EST approach. Dis Aquat Organ 61:123–135

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Li SH, Zhang XJ, Sun Z, Li FH, Xiang JH (2013) Transcriptome analysis on Chinese Shrimp Fenneropenaeus chinensis during WSSV Acute Infection. PLoS ONE 8(3):e58627

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Li SH, Lv XJ, Li FH, Xiang JH (2019) Characterization of a lymphoid organ specific anti-lipopolysaccharide factor from shrimp reveals structure-activity relationship of the LPS-binding domain. Front Immunol 10:872

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Wang Y, Tang T, Gu J, Li X, Yang X, Gao X, Liu F, Wang J (2015) Identification of five antilipopolysaccharide factors in oriental river prawn, Macrobrachium nipponense. Fish Shellfish Immunol 46:252–260

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Gu HJ, Sun QL, Jiang S, Zhang J, Sun L (2018) First characterization of an anti-lipopolysaccharide factor (ALF) from hydrothermal vent shrimp: Insights into the immune function of deep-sea crustacean ALF. Dev Comp Immunol 84:382–395

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Matos GM, Schmitt P, Barreto C, Farias ND, Toledo-Silva G, Guzman F, Destoumieux-Garzon D, Perazzolo LM, Rosa RD (2018) Massive gene expansion and sequence diversification is associated with diverse tissue distribution, regulation and antimicrobial properties of anti-lipopolysaccharide factors in shrimp. Mar Drugs 16(10):381

    CAS  PubMed Central  Article  Google Scholar 

  12. 12.

    Yang Y, Boze H, Chemardin P, Padilla A, Moulin G et al (2009) NMR structure of rALF-Pm3, an anti-lipopolysaccharide factor from shrimp: model of the possible lipid A-binding site. Biopolymers 91(3):207–220

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Schmitt P, Rosa RD (1858) Destoumieux-Garzón D (2016) An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. Biochim Biophys Acta Biomembr 5:958–970

    Google Scholar 

  14. 14.

    Rosa RD, Vergnes A, De Lorgeril J, Goncalves P, Perazzolo LM, Saune L, Romestand B, Fievet J, Gueguen Y, Bachere E, Destoumieux-Garzon D (2013) Functional divergence in shrimp anti-lipopolysaccharide factors (ALFs): from recognition of cell wall components to antimicrobial activity. PLoS ONE 8(7):e67937

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Carriel-Gomes MC, Kratz JM, Barracco MA, Bachere E, Barardi CR, Simoes CM (2007) In vitro antiviral activity of antimicrobial peptides against herpes simplex virus 1, adenovirus, and rotavirus. Mem Inst Oswaldo Cruz 102:469–472

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    De la Vega E, O’Leary NA, Shockey JE, Robalino J, Payne C, Browdy CL, Warr GW, Gross PS (2008) Anti-lipopolysaccharide factor in Litopenaeus vannamei (LvALF): a broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection. Mol Immunol 45:1916–1925

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  17. 17.

    Liu H, Jiravanichpaisal P, Soderhall I, Cerenius L, Soderhall K (2006) Antilipopolysaccharide factor interferes with white spot syndrome virus replication in vitro and in vivo in the crayfish Pacifastacus leniusculus. J Virol 80:10365–10371

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Somboonwiwat K, Marcos M, Tassanakajon A, Klinbunga S, Aumelas A, Romestand B, Gueguen Y, Boze H, Moulin G, Bachere E (2005) Recombinant expression and antimicrobial activity of anti-lipopolysaccharide factor (ALF) from the black tiger shrimp Penaeus monodon. Dev Comp Immunol 29:841–851

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Tassanakajon A, Somboonwiwat K, Amparyup P (2015) Sequence diversity and evolution of antimicrobial peptides in invertebrates. Dev Comp Immunol 48:324–341

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Aketagawa J, Miyata T, Ohtsubo S, Nakamura T, Morita T, Hayashida H, Miyata T, Iwanaga S, Takao T, Shimonishi Y (1986) Primary structure of Limulus anticoagulant anti-lipopolysaccharide factor. J Biol Chem 261(16):7357–7365

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Muta T, Miyata T, Tokunaga F, Nakamura T, Iwanaga S (1987) Primary structure of anti-lipopolysaccharide factor from American horseshoe crab. Limulus polyphemus J Biochem 101(6):1321–1330

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Tharntada S, Ponprateep S, Somboonwiwat K, Liu H, Söderhäll I, Söderhäll K, Tassanakajon A (2009) Role of anti-lipopolysaccharide factor from the black tiger shrimp, Penaeus monodon, in protection from white spot syndrome virus infection. J Gen Virol 90(6):1491–1498

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Nandakumar G (1997) Biology population characteristics and fishery of the speckled shrimp Metapenaeus monoceros fabricius 1798 along the Kerala coast. Dissertation, Cochin University of Science and Technology

  24. 24.

    Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 6(1):296–303

    Article  CAS  Google Scholar 

  25. 25.

    Miles RS, Amyes SGB (1996) Laboratory control of antimicrobial therapy. In: Fraser AG, Marmion BP, Simons A (eds) Collee JG. Mackie & McCartney’s Practical Medical Microbiology, New York, pp 151–177

    Google Scholar 

  26. 26.

    Onuma Y, Satake M, Ukena T, Roux J, Chanteau S, Rasolofonirina N, Ratsimaloto M, Naoki H, Yasumoto T (1999) Identification of putative palytoxin as the cause of clupeotoxism. Toxicon 37(55):65. https://doi.org/10.1016/s0041-0101(98)00133-0

    Article  Google Scholar 

  27. 27.

    Kurotani A, Tokmakov AA, Sato KI, Stefanov VE, Yamada Y, Sakurai T (2019) Localization-specific distributions of protein pI in human proteome are governed by local pH and membrane charge. BMC Mol Cell Biol 20(1):36

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Vinothkumar KR, Henderson R (2010) Structures of membrane proteins. Q Rev Biophys 43(1):65–158

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Schwartz MA (2001) Integrin signaling revisited. Trends Cell Biol 11(12):466–470

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88(6):1895–1898

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Wilkins MR, Gasteiger E, Sanchez JC, Bairoch A, Hochstrasser DF (1998) Two-dimensional gel electrophoresis for proteome projects: the effects of protein hydrophobicity and copy number. Electrophoresis 19(8–9):1501–1505

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Saint Jean KD, Henderson KD, Chrom CL, Abiuso LE, Renn LM, Caputo GA (2018) Effects of hydrophobic amino acid substitutions on antimicrobial peptide behavior. Probiotics Antimicrob Proteins 10(3):408–419

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Bessalle R, Gorea A, Shalit I, Metzger JW, Dass C, Desiderio DM, Fridkin M (1993) Structure-function studies of amphiphilic antibacterial peptides. J Med Chem 36(9):1203–1209

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Matsuzaki K, Sugishita KI, Harada M, Fujii N, Miyajima K (1997) Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochimic Biophys Acta (BBA)-Biomembr 1327(1):119–130

    CAS  Article  Google Scholar 

  36. 36.

    Azad MA, Huttunen-Hennelly HEK, Friedman CR (2011) Bioactivity and the first transmission electron microscopy immunogold studies of short de novo-designed antimicrobial peptides. Antimicrob Agents Chemother 55(5):2137–2145

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Petkov P, Lilkova E, Ilieva N, Litov L (2019) Self-association of antimicrobial peptides: a molecular dynamics simulation study on bombinin. Int J Mol Sci 20(21):5450

    CAS  PubMed Central  Article  Google Scholar 

  38. 38.

    Mathews DH, Moss WN, Turner DH (2010) Folding and finding RNA secondary structure. Cold Spring Harb Perspect Biol 2(12):3665

    Article  CAS  Google Scholar 

  39. 39.

    Kumar P, Kizhakkedathu JN, Straus SK (2018) Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 8(1):4

    PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Chang KY, Yang JR (2013) Analysis and prediction of highly effective antiviral peptides based on random forests. PLoS ONE 8(8):e70166

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Dong N, Ma Q, Shan A, Lv Y, Hu W, Gu LY (2012) Strand length-dependent antimicrobial activity and membrane-active mechanism of arginine-and valine-rich β-hairpin-like antimicrobial peptides. Antimicrob Agents Chemother 56(6):2994–3003

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Hoess A, Watson S, Siber GR, Liddington R (1993) Crystal structure of an endotoxin-neutralizing protein from the horseshoe crab, Limulus anti‐LPS factor, at 1.5 A resolution. EMBO J 12(9):3351–3356

  43. 43.

    Guo S, Li S, Li F, Zhang X, Xiang J (2014) Modification of a synthetic LPS-binding domain of anti-lipopolysaccharide factor from shrimp reveals strong structure-activity relationship in their antimicrobial characteristics. Dev Comp Immunol 45(2):227–232

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Li S, Guo S, Li F, Xiang J (2014) Characterization and function analysis of an anti-lipopolysaccharide factor (ALF) from the Chinese shrimp Fenneropenaeus chinensis. Dev Comp Immunol 46(2):349–355

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Li S, Guo S, Li F, Xiang J (2015) Functional diversity of anti-lipopolysaccharide factor isoforms in shrimp and their characters related to antiviral activity. Mar Drugs 13(5):2602–2616

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Somboonwiwat K, Bachère E, Rimphanitchayakit V, Tassanakajon A (2008) Localization of anti-lipopolysaccharide factor (ALFPm3) in tissues of the black tiger shrimp, Penaeus monodon, and characterization of its binding properties. Dev Comp Immunol 32(10):1170–1176

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Sun C, Xu WT, Zhang HW, Dong LP, Zhang T, Zhao XF, Wang JX (2011) An anti-lipopolysaccharide factor from red swamp crayfish, Procambarus clarkii, exhibited antimicrobial activities in vitro and in vivo. Fish & shellfish Immunol 30(1):295–303

    CAS  Article  Google Scholar 

  48. 48.

    Jiang HS, Zhang Q, Zhao YR, Jia WM, Zhao XF, Wang JX (2015) A new group of anti-lipopolysaccharide factors from Marsupenaeus japonicus functions in antibacterial response. Dev Comp Immunol 48(1):33–42

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Yang H, Li S, Li F, Lv X, Xiang J (2015) Recombinant expression and functional analysis of an isoform of anti-lipopolysaccharide factors (FcALF5) from Chinese shrimp Fenneropenaeus chinensis. Dev Comp Immunol 53(1):47–54

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Yedery RD, Reddy KVR (2009) Identification, cloning, characterization and recombinant expression of an anti-lipopolysaccharide factor from the hemocytes of Indian mud crab. Scylla serrata Fish & shellfish Immunol 27(2):275–284

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, Centre for Marine Living Resources and Ecology (CMLRE) and Ministry of Earth Sciences (MoES), Government of India, for the research grant (MoES/10-MLR/01/2012) and scientific support for the work. The first author is grateful to the University Grants Commission (UGC) for the award of the fellowship, the second author to DST, Govt. of India for the WoS-B Grant (NASI/SoRF-1/2015-16/07 dt.20-01-2016) and the corresponding author to UGC, Govt. of India for the BSR Faculty Grant (F.18-1/2011(BSR) dt. 16 May 2019). The authors wish to thank the Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology and National Centre for Aquatic and Animal Health (NCAAH), and Cochin University of Science and Technology for the facilities provided for the successful completion of the work.

Author information

Affiliations

Authors

Contributions

All authors contributed to the experimental design and accomplishment of the work. The experiments were carried out under the guidance and supervision of Rosamma Philip. The experiments were performed by Archana K with the help of the authors Sephy Rose Sebastian, Sruthy K. S., Aishwarya  Nair, and Anju M. V. The results were analysed by Archana K and Rosamma Philip. The manuscript was written by Archana K. The same was reviewed and edited by Rosamma Philip. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rosamma Philip.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors that should be approved by Ethics Committee.

Additional information

Publisher’s Note

 Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 351 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

K, A., Sebastian, S.R., K.S., S. et al. Molecular and Functional Characterization of an Anti-lipopolysaccharide Factor Mm-ALF from Speckled Shrimp Metapenaeus monoceros. Probiotics & Antimicro. Prot. (2021). https://doi.org/10.1007/s12602-021-09741-3

Download citation

Keywords

  • Antimicrobial peptide
  • Metapenaeus monoceros
  • Anti-lipopolysaccharide factor
  • Host defence peptides