Modeling the Ethanol Tolerance of the Probiotic Yeast Saccharomyces cerevisiae var. boulardii CNCM I-745 for its Possible Use in a Functional Beer

Abstract

Saccharomyces yeasts are able to ferment simple sugars to generate levels of ethanol that are toxic to other yeasts and bacteria. The tolerance to ethanol of different yeasts depends also on the incubation temperature. In this study, the ethanol stress responses of S. cerevisiae and the probiotic yeast S. boulardii CNCM I-745 were evaluated at two temperatures. The growth kinetics parameters were obtained by fitting the Baranyi and Roberts model to the experimental data. The four-parameter logistic Hill equation was used to describe the ethanol tolerance of the yeasts at the temperatures of 28 and 37 °C. Adequate determination coefficients were obtained (R2 > 0.91) in all cases. S. boulardii grown at 28 °C was selected as the yeast with the best ethanol tolerance (6–8%) for use in the elaboration of functional craft beers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma – a review. S Afr J Enol Vitic 21(1):97–129. https://doi.org/10.21548/21-1-3560

    CAS  Article  Google Scholar 

  2. 2.

    Walker GM, Stewart GG (2016) Saccharomyces cerevisiae in the production of fermented beverages. Beverages 2:30. https://doi.org/10.3390/beverages2040030

    CAS  Article  Google Scholar 

  3. 3.

    Capece A, Romaniello R, Pietrafesa A, Siesto G, Pietrafesa R, Zambuto M, Romano P (2018) Use of Saccharomyces cerevisiae var. boulardii in co-fermentations with S. cerevisiae for the production of craft beers with potential healthy value added. Int J Food Microbiol 284:22–30. https://doi.org/10.1016/j.ijfoodmicro.2018.06.028

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Senkarcinova B, Graça Dias IA, Nespor J, Branyik T (2019) Probiotic alcohol-free beer made with Saccharomyces cerevisiae var. boulardii. LWT Food Sci Technol 100:362–367. https://doi.org/10.1016/j.lwt.2018.10.082

    CAS  Article  Google Scholar 

  5. 5.

    Dinleyici EC, Kara A, Ozen M, Vandenplas Y (2014) Saccharomyces boulardii CNCM I-745 in different clinical conditions. Expert Opin Biol Ther 14:1593–1609. https://doi.org/10.1517/14712598.2014.937419

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Dinleyici EC, Eren M, Ozen M, Yargic ZA, Vandenplas Y (2012) Effectiveness and safety of Saccharomyces boulardii for acute infectious diarrhea. Expert Opin Biol Ther 12:395–410. https://doi.org/10.1517/14712598.2012.664129

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Stier H, Bischoff SC (2016) Influence of Saccharomyces boulardii CNCM I-745 on the gut-associated immune system. Clin Exp Gastroenterol 9:269–279. https://doi.org/10.2147/CEG.S111003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Czerucka D, Rampal P (2019) Diversity of Saccharomyces boulardii CNCM I-745 mechanisms of action against intestinal infections. World J Gastroenterol 25:2188–2203. https://doi.org/10.3748/wjg.v25.i18.2188

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Moré M, Vandenplas Y (2018) Saccharomyces boulardii CNCM I-745 improves intestinal enzyme function: a trophic effects review. Clin Med Insights Gastroenterol 11:1–14. https://doi.org/10.1177/1179552217752679

    Article  Google Scholar 

  10. 10.

    Moré M, Swidsinski A (2015) Saccharomyces boulardii CNCM I-745 supports regeneration of the intestinal microbiota after diarrheic dysbiosis – a review. Clin Exp Gastroenterol 8:237–255. https://doi.org/10.2147/ceg.s85574

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Terciolo C, Dobric A, Ouaissi M, Siret C, Breuzard G, Silvy F, Marchiori B, Germain S, Bonier R, Hama A, Owens R, Lombardo D, Rigot V, André F (2017) Saccharomyces boulardii CNCM I-745 restores intestinal barrier integrity by regulation of E-cadherin recycling. J Chrons Colitis 11:999–1010. https://doi.org/10.1093/ecco-jcc/jjx030

    Article  Google Scholar 

  12. 12.

    Casey GP, Ingledew WM (1986) Ethanol tolerance in yeasts. Crit Rev Microbiol 13:219–280. https://doi.org/10.3109/10408418609108739

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    D’Amore T, Panchal CJ, Rusell I, Stewart GG (1990) A study of ethanol tolerance in yeast. Crit Rev Biotechnol 9:287–304. https://doi.org/10.3109/07388558909036740

    Article  PubMed  Google Scholar 

  14. 14.

    Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA (2010) The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 109:13–24. https://doi.org/10.1111/j.1365-2672.2009.04657.x

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Ding J, Huang X, Zhang L, Zhao N, Yang D, Zhang K (2009) Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 85:253–263. https://doi.org/10.1111/j.1365-2672.2009.04657.x

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Morard M, Macías LG, Adam AC, Lairón-Peris M, Pérez-Torrado R, Toft C, Barrio E (2019) Aneuploidy and ethanol tolerance in Saccharomyces cerevisiae. Front Genet 10:82. https://doi.org/10.3389/fgene.2019.00082

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    You KM, Rosenfield CL, Knipple DC (2003) Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69:1499–1503. https://doi.org/10.1128/aem.69.3.1499-1503.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Ma M, Liu ZL (2012) Molecular mechanisms of ethanol tolerance in Saccharomyces cerevisiae. In: Liu ZL (ed) Microbial stress tolerance for biofuels. Springer-Verlag, Heidelberg, pp 77–115. https://doi.org/10.1007/978-3-642-21467-7_4

    Google Scholar 

  19. 19.

    Stratford M, Steels H, Novodvorska M, Archer DB, Avery SV (2019) Extreme osmotolerance and halotolerance in food-relevant yeasts and the role of glycerol-dependent cell individuality. Front Microbiol 9:3238. https://doi.org/10.3389/fmicb.2018.03238

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Riles L, Fay JC (2019) Genetic basis of variation in heat and ethanol tolerance in Saccharomyces cerevisiae. Genes Genom Genet 9:179–188. https://doi.org/10.1534/g3.118.200566

    CAS  Article  Google Scholar 

  21. 21.

    Gadagkar SR, Call GB (2015) Computation tools for fitting the Hill equation to dose-response curves. J Pharmacol Toxicol Methods 71:68–76. https://doi.org/10.1016/j.vascn.2014.08.006

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    González-Quijano GK, Dorantes-Alvarez L, Hernández-Sánchez H, Jaramillo-Flores ME, Perea-Flores MJ, Vera-Ponce de León A, Hernández-Rodríguez C (2014) Halotolerance and survival kinetics of lactic acid bacteria isolated from jalapeño pepper (Capsicum annuum L.) fermentation. J Food Sci 79:M1545–M1553. https://doi.org/10.1111/1750-3841.12498

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Ávila-Reyes SV, Camacho-Díaz BH, Acosta-García MC, Jiménez-Aparicio AR, Hernández-Sánchez H (2016) Effect of salt and sugar osmotic stress on the viability and morphology of Saccharomyces boulardii. Int J Environ Agric Biotechnol 1(3):593–602. https://doi.org/10.22161/ijeab/1.3.43

    Article  Google Scholar 

  24. 24.

    Kurtzman C, Fell JW, Boekhut T, Robert V (2011) Methods for the isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman C, Fell JW, Boekhut T (eds) The yeasts. A taxonomic study, 1, 5th edn. Elsevier Science, San Diego, pp 87–110. https://doi.org/10.1016/B978-0-444-52149-1.00007-0

    Google Scholar 

  25. 25.

    Grijspeerdt K, Vanrolleghem P (1999) Estimating the parameters of the Baranyi model for bacterial growth. Food Microbiol 16:593–605. https://doi.org/10.1006/fmic.1999.0285

    Article  Google Scholar 

  26. 26.

    Osumi M (2012) Visualization of yeast cells by electron microscopy. J Electron Microsc 61:343–365. https://doi.org/10.1093/jmicro/dfs082

    CAS  Article  Google Scholar 

  27. 27.

    Bozzola JJ (2014) Conventional specimen preparation techniques for transmission electron microscopy of cultured cells. In: Kuo J (ed) Electron microscopy. Methods and protocols, 3rd edn. Springer, New York, pp 1–20. https://doi.org/10.1007/978-1-59745-294-6_1

    Google Scholar 

  28. 28.

    Martínez-Arámburu D, González-Quijano GK, Dorantes-Alvarez L, Aparicio-Ozores G, López-Villegas EO (2015) Changes in microstructure of Salmonella typhimurium and Listeria monocytogenes exposed to hydroxycinnamic salts. Rev Mex Ing Quím 14:347–354

    Google Scholar 

  29. 29.

    Teixeira-Leite M (2018) Sigmoidal models fitted to the Saccharomyces cerevisiae growth curve: statistical analysis using measures of nonlinearity. Am J Eng Res 8(1):1–9

    Google Scholar 

  30. 30.

    Czerucka D, Piche T, Rampal P (2007) Review article: yeast as probiotics – Saccharomyces boulardii. Aliment Pharm Therap 26:767–778. https://doi.org/10.1111/j.1365-2036.2007.03442.x

    CAS  Article  Google Scholar 

  31. 31.

    Piper PW (1995) The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127. https://doi.org/10.1111/j.1574-6968.1995.tb07925.x

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    López-Malo M, Querol A, Guillamon JM (2013) Metabolomic comparison of Saccharomyces cerevisiae and the cryotolerant species S. bayanus var. uvarum and S. kudriavzevii during wine fermentation at low temperature. PLoS One 8(3):e60135. https://doi.org/10.1371/journal.pone.0060135

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Du LP, Hao RX, Xiao DG, Guo LL, Gai WD (2011) Research on the characteristics and culture conditions of Saccharomyces boulardii. Adv Mater Res 343-344:594–598. https://doi.org/10.4028/www.scientific.net/AMR.343-344.594

    Article  Google Scholar 

  34. 34.

    Volpe DA, Hamed SS, Zhang LK (2014) Use of different parameters and equations for calculation of IC50 values in efflux assays: potential sources of variability in IC50 determination. AAPS J 16:172–180. https://doi.org/10.1208/s12248-013-9554-7

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Saini P, Beniwal A, Kokkiligadda A, Vij S (2018) Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Process Biochem 72:1–12. https://doi.org/10.1016/j.procbio.2018.07.001

    CAS  Article  Google Scholar 

  36. 36.

    Auesukaree C (2017) Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. J Biosci Bioeng 124:133–142. https://doi.org/10.1016/j.jbiosc.2017.03.009

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Charoenbhakdi S, Dokpikul T, Burphan T, Techo T, Auesukaree C (2016) Vacuolar H+-ATPase protects Saccharomyces cerevisiae cells against ethanol-induced oxidative and cell wall stresses. Appl Environ Microbiol 82:3121–3130. https://doi.org/10.1128/aem.00376-16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Bernstein JM (2016) Complete IPA. Sterling Publishing Co., New York

    Google Scholar 

Download references

Funding

Author Ramírez-Cota received scholarship from CONACyT (Mexico) to study her PhD program, and all the authors received a grant from the SIP of Instituto Politécnico Nacional, Mexico (grant number 20195505) to develop the thesis project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Humberto Hernández-Sánchez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not include studies with human participants or animals.

Informed Consent

No formal consent is required for this kind of study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Cota, G.Y., López-Villegas, E.O., Jiménez-Aparicio, A.R. et al. Modeling the Ethanol Tolerance of the Probiotic Yeast Saccharomyces cerevisiae var. boulardii CNCM I-745 for its Possible Use in a Functional Beer. Probiotics & Antimicro. Prot. (2020). https://doi.org/10.1007/s12602-020-09680-5

Download citation

Keywords

  • Ethanol tolerance
  • Saccharomyces boulardii CNCM I-745
  • Dose-response model
  • Functional craft beer