Dietary Probiotic Bacillus licheniformis H2 Enhanced Growth Performance, Morphology of Small Intestine and Liver, and Antioxidant Capacity of Broiler Chickens Against Clostridium perfringens–Induced Subclinical Necrotic Enteritis

Abstract

The reduction in the use of antibiotics in the poultry industry has considerably increased the appearance of Clostridium perfringens (CP)induced subclinical necrotic enteritis (SNE), forcing researchers to search alternatives to antibiotic growth promoters (AGP) like probiotics. This study aimed to investigate the effect and the underlying potential mechanism of dietary supplementation of Bacillus licheniformis H2 to prevent SNE. A total of 180 1-day-old male broiler chickens (Ross 308) were randomly divided into three groups, with six replicates in each group and ten broilers per pen: (a) basal diet in negative control group(NC group); (b) basal diet + SNE infection(coccidiosis vaccine + CP) (SNE group); (c) basal diet + SNE infection + H2 pre-treatment(BL group). Growth performance, morphology of small intestine and liver, and antioxidant capacity of the serum, ileum, and liver were assessed in all three groups. The results showed that H2 significantly suppressed (P < 0.05) the negative effects on growth performance induced by SNE, including loss of body weight gain, decrease of feed intake, and raise of feed conversion ratio among the different treatments at 28 days. The addition of H2 also increased (P < 0.05) the villus height: crypt depth ratio as well as villus height in the ileum. Chicks fed with H2 diet had lower malondialdehyde (MDA) concentration in the ileum in BL group than that in SNE group (P < 0.05). Moreover, compared with other treatment groups, dietary H2 improved the activities of antioxidant enzymes in the ileum, serum, and liver (P < 0.05). H2 may also prevent SNE by significantly increasing the protein content (P < 0.05) of Bcl-2 in the liver. Dietary supplementation of H2 could effectively prevent the appearance of CP-induced SNE and improve the growth performance of broiler chickens damaged by SNE, of which the mechanism may be related to intestinal development, antioxidant capacity, and apoptosis which were improved by H2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

NE:

necrotic enteritis

SNE:

subclinical necrotic enteritis

H2:

Bacillus licheniformis H2

CP:

Clostridium perfringens

AGP:

antibiotic growth promoters

BWG:

body weight gain

FI:

feed intake

FCR:

feed conversion ratio

T-AOC:

total antioxidation capacity

CAT:

activities of catalase

SOD:

superoxide dismutase

GSH-Px:

glutathione peroxidase

IHR:

inhibition of hydroxy radical

MDA:

malondialdehyde

References

  1. 1.

    Parish WE (1961) Necrotic enteritis in the fowl (Gallus gallus domesticus). I. Histopathology of the disease and isolation of a strain of Clostridium welchii. J Comp Pathol 71:377–393. https://doi.org/10.1016/S0368-1742(61)80043-X

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Timbermont L, Haesebrouck F, Ducatelle R, Van Immerseel F (2011) Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathol 40(4):341–347. https://doi.org/10.1080/03079457.2011.590967

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Prescott JF, Smyth JA, Shojadoost B, Vince A (2016) Experimental reproduction of necrotic enteritis in chickens: a review. Avian Pathol 45(3):317–322. https://doi.org/10.1080/03079457.2016.1141345

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Zahoor I, Ghayas A, Basheer A (2018) Genetics and genomics of susceptibility and immune response to necrotic enteritis in chicken: a review. Mol Biol Rep 45(1):31–37. https://doi.org/10.1007/s11033-017-4138-8

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Keyburn AL, Yan XX, Bannam TL, Van Immerseel F, Rood JI, Moore RJ (2010) Association between avian necrotic enteritis and Clostridium perfringens strains expressing NetB toxin. Vet Res 41(2):21. https://doi.org/10.1051/vetres/2009069

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Johansson A, Aspán A, Kaldhusdal M, Engström BE (2010) Genetic diversity and prevalence of netB in Clostridium perfringens isolated from a broiler flock affected by mild necrotic enteritis. Vet Microbiol 144(1-2):87–92. https://doi.org/10.1016/j.vetmic.2009.12.017

    Article  PubMed  Google Scholar 

  7. 7.

    Van Immerseel F, De Buck J, Pasmans F, Huyghebaert G, Haesebrouck F, Ducatelle R (2004) Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian Pathol 33(4):537–549. https://doi.org/10.1080/03079450400013162

    Article  PubMed  Google Scholar 

  8. 8.

    Xue GD, Wu SB, Choct M, Swick RA (2017) The role of supplemental glycine in establishing a subclinical necrotic enteritis challenge model in broiler chickens. Anim Nutr 3(3):266–270. https://doi.org/10.1016/j.aninu.2017.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Prescott JF, Parreira VR, Mehdizadeh Gohari I, Lepp D, Gong J (2016) The pathogenesis of necrotic enteritis in chickens: what we know and what we need to know: a review. Avian Pathol 45(3):288–294. https://doi.org/10.1080/03079457.2016.1139688

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Fasina YO, Newman MM, Stough JM, Liles MR (2016) Effect of Clostridium perfringens infection and antibiotic administration on microbiota in the small intestine of broiler chickens. Poult Sci 95(2):247–260. https://doi.org/10.3382/ps/pev329

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Vidanarachchi JK, Mikkelsen LL, Constantinoiu CC, Choct M, Iji PA (2013) Natural plant extracts and prebiotic compounds as alternatives to antibiotics in broiler chicken diets in a necrotic enteritis challenge model. Anim Prod Sci 53(12):1247–1259. https://doi.org/10.1071/AN12374

    CAS  Article  Google Scholar 

  12. 12.

    Van Immerseel F, Rood JI, Moore RJ, Titball RW (2009) Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol 17(1):32–36. https://doi.org/10.1016/j.tim.2008.09.005

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Shojadoost B, Vince AR, Prescott JF (2012) The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens: a critical review. Vet Res 43:74–12. https://doi.org/10.1186/1297-9716-43-74

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Hofacre CL, Smith JA, Mathis GF (2018) An optimist’s view on limiting necrotic enteritis and maintaining broiler gut health and performance in today's marketing, food safety, and regulatory climate. Poult Sci 97(6):1929–1933. https://doi.org/10.3382/ps/pey082

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Rodrigues I, Svihus B, Bedford MR, Gous R, Choct M (2018) Intermittent lighting improves resilience of broilers during the peak phase of sub-clinical necrotic enteritis infection. Poult Sci 97(2):438–446. https://doi.org/10.3382/ps/pex315

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Alagawany M, Abd El-Hack ME, Farag MR, Sachan S, Karthik K, Dhama K (2018) The use of probiotics as eco-friendly alternatives for antibiotics in poultry nutrition. Environ Sci Pollut Res Int 25(11):10611–10618. https://doi.org/10.1007/s11356-018-1687-x

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Plaza-Diaz J, Gomez-Llorente C, Fontana L, Gil A (2014) Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. World J Gastroenterol 20(42):15632–15649. https://doi.org/10.3748/wjg.v20.i42.15632

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, Drider D (2019) Benefits and inputs from Lactic Acid Bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front Microbiol 10:57. https://doi.org/10.3389/fmicb.2019.00057

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Patterson JA, Burkholder KM (2003) Application of prebiotics and probiotics in poultry production. Poult Sci 82(4):627–631. https://doi.org/10.1093/ps/82.4.627

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Mishra C, Lambert J (1996) Production of anti-microbial substances by probiotics. Asia Pac J Clin Nutr 5(1):20–24

    CAS  PubMed  Google Scholar 

  21. 21.

    Markowiak P, Śliżewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9(9):1021. https://doi.org/10.3390/nu9091021

    CAS  Article  PubMed Central  Google Scholar 

  22. 22.

    Sun X, Jia Z (2018) Microbiome modulates intestinal homeostasis against inflammatory diseases. Vet Immunol Immunopathol 205:97–105. https://doi.org/10.1016/j.vetimm.2018.10.014

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Caly DL, D'Inca R, Auclair E, Drider D (2015) Alternatives to antibiotics to prevent necrotic enteritis in broiler chickens: a microbiologist’s perspective. Front Microbiol 6:1336. https://doi.org/10.3389/fmicb.2015.01336

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Bai WK, Zhang FJ, He TJ, Su PW, Ying XZ, Zhang LL, Wang T (2016) Dietary probiotic Bacillus subtilis strain fmbj increases antioxidant capacity and oxidative stability of chicken breast meat during storage. PLoS One 11(12):e0167339. https://doi.org/10.1371/journal.pone.0167339

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Mishra B, Jha R (2019) Oxidative stress in the poultry gut: potential challenges and interventions. Front Vet Sci 6:60. https://doi.org/10.3389/fvets.2019.00060

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Li Z, Wang W, Lv Z, Liu D, Guo Y (2017) Bacillus subtilis and yeast cell wall improve the intestinal health of broilers challenged by Clostridium perfringens. Br Poult Sci 58(6):635–643. https://doi.org/10.1080/00071668.2017.1370697

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Wang H, Ni X, Qing X, Zeng D, Luo M, Liu L, Li G, Pan K, Jing B (2017) Live probiotic Lactobacillus johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers. Front Microbiol 8:1073. https://doi.org/10.3389/fmicb.2017.01073

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Wang H, Ni X, Qing X, Liu L, Lai J, Khalique A, Li G, Pan K, Jing B, Zeng D (2017) Probiotic enhanced intestinal immunity in broilers against subclinical necrotic enteritis. Front Immunol 8:1592. https://doi.org/10.3389/fimmu.2017.01592

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Qing X, Zeng D, Wang H, Ni X, Lai J, Liu L, Khalique A, Pan K, Jing B (2018) Analysis of hepatic transcriptome demonstrates altered lipid metabolism following Lactobacillus johnsonii BS15 prevention in chickens with subclinical necrotic enteritis. Lipids Health Dis 17(1):93. https://doi.org/10.1186/s12944-018-0741-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Zhou M, Zeng D, Ni X, Tu T, Yin Z, Pan K, Jing B (2016) Effects of Bacillus licheniformis on the growth performance and expression of lipid metabolism-related genes in broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis[J]. Lipids Health Dis 15:48. https://doi.org/10.1186/s12944-016-0219-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Xu S, Lin Y, Zeng D, Zhou M, Zeng Y, Wang H, Zhou Y, Zhu H, Pan K, Jing B, Ni X (2018) Bacillus licheniformis normalize the ileum microbiota of chickens infected with necrotic enteritis. Sci Rep 8(1):1744. https://doi.org/10.1038/s41598-018-20059-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Lin Y, Xu S, Zeng D, Ni X, Zhou M, Zeng Y, Wang H, Zhou Y, Zhu H, Pan K, Li G (2017) Disruption in the cecal microbiota of chickens challenged with Clostridium perfringens and other factors was alleviated by Bacillus licheniformis supplementation. PLoS One 12(8):e0182426. https://doi.org/10.1371/journal.pone.0182426

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Smyth JA (2016) Pathology and diagnosis of necrotic enteritis: is it clear-cut? Avian Pathol 45(3):282–287. https://doi.org/10.1080/03079457.2016.1158780

    Article  PubMed  Google Scholar 

  34. 34.

    Huang T, Gao B, Chen WL, Xiang R, Yuan MG, Xu ZH, Peng XY (2018) Temporal effects of high fishmeal diet on gut microbiota and immune response in Clostridium perfringens-challenged chickens. Front Microbiol 9:2754. https://doi.org/10.3389/fmicb.2018.02754

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Løvland A, Kaldhusdal M (1999) Liver lesions seen at slaughter as an indicator of necrotic enteritis in broiler flocks. FEMS Immunol Med Microbiol 24(3):345–351. https://doi.org/10.1111/j.1574-695X.1999.tb01304.x

    Article  PubMed  Google Scholar 

  36. 36.

    Awad WA, Ghareeb K, Abdel-Raheem S, Böhm J (2009) Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult Sci 88(1):49–56. https://doi.org/10.3382/ps.2008-00244

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Musa BB, Duan Y, Khawar H, Sun Q, Ren Z, Elsiddig Mohamed MA, Abbasi IHR, Yang X (2019) Bacillus subtilis B21 and Bacillus licheniformis B26 improve intestinal health and performance of broiler chickens with Clostridium perfringens-induced necrotic enteritis. J Anim Physiol Anim Nutr (Berl) 103(4):1039–1049. https://doi.org/10.1111/jpn.13082

    CAS  Article  Google Scholar 

  38. 38.

    Gobi N, Vaseeharan B, Chen JC, Rekha R, Vijayakumar S, Anjugam M, Iswarya A (2018) Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus. Fish Shellfish Immunol 74:501–508. https://doi.org/10.1016/j.fsi.2017.12.066

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Jia P, Cui K, Ma T, Wan F, Wang W, Yang D, Wang Y, Guo B, Zhao L, Diao Q (2018) Influence of dietary supplementation with Bacillus licheniformis and Saccharomyces cerevisiae as alternatives to monensin on growth performance, antioxidant, immunity, ruminal fermentation and microbial diversity of fattening lambs. Sci Rep 8(1):16712–16710. https://doi.org/10.1038/s41598-018-35081-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Zhou M, Zeng D, Ni X, Tu T, Yin Z, Pan K, Jing B (2016) Effects of Bacillus licheniformis on the growth performance and expression of lipid metabolism-related genes in broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Lipids Health Dis 15:48–10. https://doi.org/10.1186/s12944-016-0219-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Mingmongkolchai S, Panbangred W (2018) Bacillus probiotics: an alternative to antibiotics for livestock production. J Appl Microbiol 124(6):1334–1346. https://doi.org/10.1111/jam.13690

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Zhang ZF, Kim IH (2014) Effects of multistrain probiotics on growth performance, apparent ileal nutrient digestibility, blood characteristics, cecal microbial shedding, and excreta odor contents in broilers. Poult Sci 93(2):364–370. https://doi.org/10.3382/ps.2013-03314

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Jayaraman S, Das PP, Saini PC, Roy B, Chatterjee PN (2017) Use of Bacillus Subtilis PB6 as a potential antibiotic growth promoter replacement in improving performance of broiler birds. Poult Sci 96(8):2614–2622. https://doi.org/10.3382/ps/pex079

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Bortoluzzi C, Serpa Vieira B, de Paula Dorigam JC, Menconi A, Sokale A, Doranalli K, Applegate TJ (2009) Bacillus subtilis DSM 32315 supplementation attenuates the effects of Clostridium perfringens challenge on the growth performance and intestinal microbiota of broiler chickens. Microorganisms 7(3):E71. https://doi.org/10.3390/microorganisms7030071

    CAS  Article  Google Scholar 

  45. 45.

    Bai K, Huang Q, Zhang J, He J, Zhang L, Wang T (2017) Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult Sci 96(1):74–82. https://doi.org/10.3382/ps/pew246

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Mountzouris KC, Tsirtsikos P, Kalamara E, Nitsch S, Schatzmayr G, Fegeros K (2007) Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult Sci 86(2):309–317. https://doi.org/10.1093/ps/86.2.309

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Yang CM, Cao GT, Ferket PR, Liu TT, Zhou L, Zhang L, Xiao YP, Chen AG (2012) Effects of probiotic, Clostridium butyricum, on growth performance, immune function, and cecal microflora in broiler chickens. Poult Sci 91(9):2121–2129. https://doi.org/10.3382/ps.2011-02131

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Wang X, Farnell YZ, Peebles ED, Kiess AS, Wamsley KG, Zhai W (2016) Effects of prebiotics, probiotics, and their combination on growth performance, small intestine morphology, and resident Lactobacillus of male broilers. Poult Sci 95(6):1332–1340. https://doi.org/10.3382/ps/pew030

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Zhang L, Bai K, Zhang J, Xu W, Huang Q, Wang T (2017) Dietary effects of Bacillus subtilis fmbj on the antioxidant capacity of broilers at an early age. Poult Sci 96(10):3564–3573. https://doi.org/10.3382/ps/pex172

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Jayaraman S, Thangavel G, Kurian H, Mani R, Mukkalil R, Chirakkal H (2013) Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poult Sci 92(2):370–374. https://doi.org/10.3382/ps.2012-02528

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Salim HM, Kang HK, Akter N, Kim DW, Kim JH, Kim MJ, Na JC, Jong HB, Choi HC, Suh OS, Kim WK (2013) Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens. Poult Sci 92(8):2084–2090. https://doi.org/10.3382/ps.2012-02947

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Song J, Xiao K, Ke YL, Jiao LF, Hu CH, Diao QY, Shi B, Zou XT (2014) Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poult Sci 93(3):581–588. https://doi.org/10.3382/ps.2013-03455

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Mohammadagheri N, Najafi R, Najafi G (2016) Effects of dietary supplementation of organic acids and phytase on performance and intestinal histomorphology of broilers. Vet Res Forum 7(3):189–195

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Shah M, Zaneb H, Masood S, Khan RU, Mobashar M, Khan I, Din S, Khan MS, Rehman HU, Tinelli A (2019) Single or combined applications of zinc and multi-strain probiotic on intestinal histomorphology of broilers under cyclic heat stress. Probiotics Antimicrob Proteins 1–8. https://doi.org/10.1007/s12602-019-09561-6

  55. 55.

    Bai K, Feng C, Jiang L, Zhang L, Zhang J, Zhang L, Wang T (2018) Dietary effects of Bacillus subtilis fmbj on growth performance, small intestinal morphology, and its antioxidant capacity of broilers. Poult Sci 97(7):2312–2321. https://doi.org/10.3382/ps/pey116

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462. https://doi.org/10.1016/j.cub.2014.03.034

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, Wang Y, Li W (2017) Antioxidant properties of probiotic bacteria. Nutrients 9(5):E521. https://doi.org/10.3390/nu9050521

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Zolotukhin PV, Prazdnova EV, Chistyakov VA (2018) Methods to assess the antioxidative properties of probiotics. Probiotics Antimicrob Proteins 10(3):589–599. https://doi.org/10.1007/s12602-017-9375-6

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990. https://doi.org/10.1016/j.cellsig.2012.01.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Tian T, Wang Z, Zhang J (2017) Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxidative Med Cell Longev 2017:4535194. https://doi.org/10.1155/2017/4535194

    CAS  Article  Google Scholar 

  61. 61.

    Rezaie A, Parker RD, Abdollahi M (2007) Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig Dis Sci 52(9):2015–2021. https://doi.org/10.1007/s10620-006-9622-2

    Article  PubMed  Google Scholar 

  62. 62.

    Piechota-Polanczyk A, Fichna J (2014) Review article: the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn Schmiedeberg's Arch Pharmacol 387(7):605–620. https://doi.org/10.1007/s00210-014-0985-1

    CAS  Article  Google Scholar 

  63. 63.

    Lovasova E, Skardova I, Sesztakova E, Skarda J (2009) Necrotic enteritis and oxidative stress parameters in chickens. Indian Vet J 86(6):555–557. https://doi.org/10.1103/PhysRevB.22.1123

    Article  Google Scholar 

  64. 64.

    Salami SA, Majoka Mohammed A, Saha S, Garber A (2015) Efficacy of dietary antioxidants on broiler oxidative stress, performance and meat quality: science and market. Avian Biol Res 8(2):65–78. https://doi.org/10.3184/175815515X14291701859483

    Article  Google Scholar 

  65. 65.

    Gupta RK, Patel AK, Shah N, Chaudhary AK, Jha UK, Yadav UC, Gupta PK, Pakuwal U (2014) Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac J Cancer Prev 15(11):4405–4409. https://doi.org/10.7314/apjcp.2014.15.11.4405

    Article  PubMed  Google Scholar 

  66. 66.

    Mishra V, Shah C, Mokashe N, Chavan R, Yadav H, Prajapati J (2015) Probiotics as potential antioxidants: A systematic review. J Agric Food Chem 63(14):3615–3626. https://doi.org/10.1021/jf506326t

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Liao X, Wu R, Ma G, Zhao L, Zheng Z, Zhang R (2015) Effects of Clostridium butyricum on antioxidant properties, meat quality and fatty acid composition of broiler birds. Lipids Health Dis 14:36. https://doi.org/10.1186/s12944-015-0035-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Gong L, Wang B, Mei X, Xu H, Qin Y, Li W, Zhou Y (2018) Effects of three probiotic Bacillus on growth performance, digestive enzyme activities, antioxidative capacity, serum immunity, and biochemical parameters in broilers. Anim Sci J 89(11):1561–1571. https://doi.org/10.1111/asj.13089

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Kupsco A, Schlenk D (2015) Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. Int Rev Cell Mol Biol 317:1–66. https://doi.org/10.1016/bs.ircmb.2015.02.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Khailova L, Mount Patrick SK, Arganbright KM, Halpern MD, Kinouchi T, Dvorak B (2010) Bifidobacterium bifidum reduces apoptosis in the intestinal epithelium in necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 299(5):G1118–G1127. https://doi.org/10.1152/ajpgi.00131.2010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Paolella G, Mandato C, Pierri L, Poeta M, Di Stasi M, Vajro P (2014) Gut-liver axis and probiotics: their role in non-alcoholic fatty liver disease. World J Gastroenterol 20(42):15518–15531. https://doi.org/10.3748/wjg.v20.i42.15518

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Wiest R, Albillos A, Trauner M, Bajaj JS, Jalan R (2017) Targeting the gut-liver axis in liver disease. J Hepatol 67(5):1084–1103. https://doi.org/10.1016/j.jhep.2017.05.007

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Haque TR, Barritt AS 4th (2016) Intestinal microbiota in liver disease. Best Pract Res Clin Gastroenterol 30(1):133–142. https://doi.org/10.1016/j.bpg.2016.02.004

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Konturek PC, Harsch IA, Konturek K, Schink M, Konturek T, Neurath MF, Zopf Y (2018) Gut-liver axis: how do gut bacteria influence the liver? Med Sci (Basel) 6(3):E79. https://doi.org/10.3390/medsci6030079

    CAS  Article  Google Scholar 

  75. 75.

    Cramer TA, Kim HW, Chao Y, Wang W, Cheng HW, Kim YHB (2018) Effects of probiotic (Bacillus subtilis) supplementation on meat quality characteristics of breast muscle from broilers exposed to chronic heat stress. Poult Sci 97(9):3358–3368. https://doi.org/10.3382/ps/pey176

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the International Cooperative Project of Science and Technology Bureau of Sichuan Province (2018HH0103).

Author information

Affiliations

Authors

Contributions

All authors contributed to the design of the experiments. YZ, XQ, HW, and NS performed the experiments. YZ drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xueqin Ni.

Ethics declarations

Ethical Approval

All animal experiment procedures were conducted in accordance with the guidelines of the Animal Welfare Act and all procedures and protocols were approved by the Institutional Animal Care and Use Committee of the Sichuan Agricultural University (approval number: SYXKchuan2014-187; approval date: January 29, 2014).

Competing Interest

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ying Zhao and Dong Zeng are joint first authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zeng, D., Wang, H. et al. Dietary Probiotic Bacillus licheniformis H2 Enhanced Growth Performance, Morphology of Small Intestine and Liver, and Antioxidant Capacity of Broiler Chickens Against Clostridium perfringens–Induced Subclinical Necrotic Enteritis. Probiotics & Antimicro. Prot. 12, 883–895 (2020). https://doi.org/10.1007/s12602-019-09597-8

Download citation

Keywords

  • Broilers
  • Subclinical necrotic enteritis
  • Bacillus licheniformis H2
  • Growth performance
  • Antioxidant capacity