Variability in Probiotic Formulations Revealed by Proteomics and Physico-chemistry Approach in Relation to the Gut Permeability

Abstract

Variability in the efficacy, safety, and quality of probiotic formulations depends on many factors, including process conditions used by manufacturers. Developing reliable analytical tools is therefore essential to quickly monitor manufacturing differences in probiotic samples for their quality assessment. Here, multi-strain probiotics from two production sites and countries were investigated by proteomics and physico-chemistry approaches in relation to the protective effect on gut barrier. Proteomic analyses showed differences in protein abundances, identities, and origins of two series of VSL#3 samples from different sites. Even though both formulations were qualitatively similar in thermal and colloidal profiles, significant differences were quantitatively observed in terms of maximum decomposition temperature Tmax (p < 0.05) and phase transition temperature Tm (p < 0.01). Such variability in physical and biochemical features impacts on probiotic functionalities and translates into a differential modulation of gut permeability in mice. Physico-chemical scans provide coherent data with proteomics and represent a new tool for time and cost effective quality control of probiotic-based products.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Nguyen HT, Truong DH, Kouhoundé S, Ly S, Razafindralambo H, Delvigne F (2016) Biochemical engineering approaches for increasing viability and functionality of probiotic bacteria. Int J Mol Sci 17:867. https://doi.org/10.3390/ijms17060867

    CAS  Article  PubMed Central  Google Scholar 

  2. 2.

    Razafindralambo H (2018a) Trends in probiotic applications. Studium Press LLC, Houston

    Google Scholar 

  3. 3.

    Soccol CR, Vandenberghe LP d S, Spier MR, Medeiros ABP, Yamaguishi CT, Lindner JDD, Pandey A, Thomaz-Soccol V (2010) The potential of probiotics: a review. Food Technol Biotechnol 48:413–434

    CAS  Google Scholar 

  4. 4.

    Tao L, Wang B, Zhong Y, Pow SH, Zeng X, Qin C, Zhang P, Chen S, He W, Tan Y (2017) Database and bioinformatics studies of probiotics. J Agric Food Chem 65:7599–7606. https://doi.org/10.1021/acs.jafc.7b01815

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Kanmani P, Satish Kumar R, Yuvaraj N, Paari KA, Pattukumar V, Arul V (2013) Probiotics and its functionally valuable products—a review. Crit Rev Food Sci Nutr 53:641–658. https://doi.org/10.1080/10408398.2011.553752

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Kumar BV, Vijayendra SVN, Reddy OVS (2015) Trends in dairy and non-dairy probiotic products-a review. J Food Sci Technol 52:6112–6124. https://doi.org/10.1007/s13197-015-1795-2

    CAS  Article  Google Scholar 

  7. 7.

    Nagpal R, Kumar A, Kumar M, Behare PV, Jain S, Yadav H (2012) Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol Lett 334:1–15. https://doi.org/10.1111/j.1574-6968.2012.02593.x

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274:1–14. https://doi.org/10.1016/j.aquaculture.2007.11.019

    Article  Google Scholar 

  9. 9.

    Song D, Ibrahim S, Hayek S (2012) Recent application of probiotics in food and agricultural science. Probiotics 10:1–34

  10. 10.

    Guarner F, Khan AG, Garisch J, Eliakim R, Gangl A, Thomson A, Krabshuis J, Lemair T, Kaufmann P, de Paula JA (2012) World gastroenterology organisation global guidelines: probiotics and prebiotics october 2011. J Clin Gastroenterol 46:468–481. https://doi.org/10.1097/MCG.0b013e3182549092

    Article  PubMed  Google Scholar 

  11. 11.

    Lee YK, Salminen S (2009) Handbook of probiotics and prebiotics. John Wiley & Sons

  12. 12.

    De Simone C (2019) The unregulated probiotic market. Clin Gastroenterol Hepatol 17:809–817. https://doi.org/10.1016/j.cgh.2018.01.018

    Article  PubMed  Google Scholar 

  13. 13.

    Mohania D, Nagpal R, Kumar M, Bhardwaj A, Yadav M, Jain S, Marotta F, Singh V, Parkash O, Yadav H (2008) Molecular approaches for identification and characterization of lactic acid bacteria. J Dig Dis 9:190–198. https://doi.org/10.1111/j.1751-2980.2008.00345.x

    Article  PubMed  Google Scholar 

  14. 14.

    Ben Amor K, Vaughan EE, de Vos WM (2007) Advanced molecular tools for the identification of lactic acid bacteria. J Nutr 137:741S–747S. https://doi.org/10.1093/jn/137.3.741S

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Grzeskowiak L, Isolauri E, Salminen S, Gueimonde M (2011) Manufacturing process influences properties of probiotic bacteria. Br J Nutr 105:887–894. https://doi.org/10.1017/S0007114510004496

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Razafindralambo H (2018b) Advances in physical chemistry tools for probiotic characterization. In: Razafindralambo H (ed) Trends in probiotic applications. Studium Press LLC, Houston, pp 50–81

    Google Scholar 

  17. 17.

    Razafindralambo H, Delvigne F, Blecker C (2019) Physico-chemical approach for characterizing probiotics at the solid and dispersed states. Food Res Int 116:897–904. https://doi.org/10.1016/j.foodres.2018.09.026

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Razafindralambo H, Razafindralambo A, Blecker C (2019) Thermophysical fingerprinting of probiotic-based products. Sci Rep 9:10011. https://doi.org/10.1038/s41598-019-46469-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Biagioli M, Laghi L, Carino A, Cipriani S, Distrutti E, Marchianò S, Parolin C, Scarpelli P, Vitali B, Fiorucci S (2017) Metabolic variability of a multispecies probiotic preparation impacts on the anti-inflammatory activity. Front Pharmacol 8:505. https://doi.org/10.3389/fphar.2017.00505

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Cinque B, La Torre C, Lombardi F, Palumbo P, Van der Rest M, Cifone MG (2016) Production conditions affect the in vitro anti-tumoral effects of a high concentration multi-strain probiotic preparation. PLoS One 11:e0163216. https://doi.org/10.1371/journal.pone.0163216

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208. https://doi.org/10.1093/bioinformatics/18.1.207

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Aires J, Anglade P, Baraige F, Zagorec M, Champomier-Vergès MC, Butel MJ (2010) Proteomic comparison of the cytosolic proteins of three Bifidobacterium longum human isolates and Bifidobacterium longum NCC2705. BMC Microbiol 10:29. https://doi.org/10.1186/1471-2180-10-29

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Correani V, De Simone C, Mattei B (2015) Mo1931 - probiotic formulation for IBD and IBS has distinct proteomic profiles, depending from the production sites. Gastroenterology 154:S-855. https://doi.org/10.1016/S0016-5085(18)32895-6

    Article  Google Scholar 

  24. 24.

    De Simone C (2018) P884 no shared mechanisms among “old” and “new” VSL#3: implications for claims and guidelines. J Crohns Colitis 12:S564–S565. https://doi.org/10.1093/ecco-jcc/jjx180.1011

    Article  Google Scholar 

  25. 25.

    Cifone MG, Cinque B, La Torre C, Lombardi F, Palumbo P, van den Rest ME, Vuotto C, Donelli G. (2017) Complexities and pitfalls in the production of multispecies probiotics: the paradigmatic case of VSL#3 formulation and visbiome. In: Floch M H, Ringel T and Walker WA (ed) The microbiota in gastrointestinal pathophysiology. Elsevier, pp. 171–178. https://doi.org/10.1016/B978-0-12-804024-9.00020-3

  26. 26.

    Trinchieri V, Laghi L, Vitali B, Parolin C, Giusti I, Capobianco D, Mastromarino P, De Simone C (2017) Efficacy and safety of a multistrain probiotic formulation depends from manufacturing. Front Immunol 8:1474. https://doi.org/10.3389/fimmu.2017.01474

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge Mrs. Lynn Doran for DSC and TGA analyses at the Laboratory of Food Sciences and Formulation in Gembloux Agro-Bio Tech (BE). The authors wish to thank Prof. Claudio De Simone, the inventor of the De Simone Formulation, US patent 5,716,615.

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Razafindralambo.

Ethics declarations

Conflict of Interest

The authors declare that they have received no financial support for this study. The proteomic analysis by Creative Proteomic was commissioned by Prof. C. de Simone.

Ethical Approval

This study was conducted in agreement with the Italian law, and the protocol was approved by the Ethics Committee and by a National Committee of Ministry of Health (permission no. 1126/2016-PR).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

(DOCX 27 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Razafindralambo, H., Correani, V., Fiorucci, S. et al. Variability in Probiotic Formulations Revealed by Proteomics and Physico-chemistry Approach in Relation to the Gut Permeability. Probiotics & Antimicro. Prot. 12, 1193–1202 (2020). https://doi.org/10.1007/s12602-019-09590-1

Download citation

Keywords

  • Thermal decomposition
  • Transition phase
  • Colloidal properties
  • Intestinal permeability
  • Multistrain probiotics