Application of Microencapsulated Synbiotics in Fruit-Based Beverages

Abstract

In the last years, demand for functional products containing both prebiotics and probiotics (known as synbiotic) has increased, which stimulated their incorporation into other food matrices than milk-based ones. Synbiotics improve gut functionality as well as respond to the increasing demand of consumers who have become aware of the health benefits of a proper diet. The most important criterion for preserving consumer acceptance in such products is maintaining the minimum viability and activity of probiotics from the beginning of production to the end of shelf-life. For their viability, fixation and multiplying within the host, several solutions have been proposed including the fortification with prebiotics and microencapsulation of prebiotics along with probiotics. The challenge of microencapsulation is to protect the probiotic cells in foods that are not usually considered their vehicle, such as fruit matrices. It is generally known that different prebiotics may exert different degrees of protection on the entrapped bacteria cells. For food products, such as fruit beverages, few works exist that investigate the functionality of synbiotic microcapsules in protecting the survivability of probiotic cells during processing and storage. This article provides an overview of this novel trend based on a review of relevant literature. The article summarizes the synbiotic concept, challenges for synbiotic formulation in fruit beverages, and future perspectives.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Sachin KV, Ramesh C (2013) Synbiotic potential dietary supplement in functional foods. Health:58–62 https://www.researchgate.net/publication/258098995

  2. 2.

    Wang Y (2009) Prebiotics: present and future in food science and technology. Food Res Int 42:8–12. https://doi.org/10.1016/j.foodres.2008.09.001

    CAS  Article  Google Scholar 

  3. 3.

    FAO/WHO (2002) Guidelines for the evaluation of probiotic in food. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food, London

    Google Scholar 

  4. 4.

    EFSA (2005) Opinion of the scientific committee on a request from EFSA related to a generic approach to the safety assessment by EFSA of microorganisms used in food/feed and the production of food/feed additives. EFSA J 226:1–12

    Google Scholar 

  5. 5.

    Iannitti T, Palmieri B (2010) Therapeutical use of probiotic formulations in clinical practice. Clin Nutr 29(6):701–725. https://doi.org/10.1016/j.clnu.2010.05.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Miremadi F, Ayyash M, Sherkat F, Stojanovska L (2014) Cholesterol reduction mechanisms and fatty acid composition of cellular membranes of probiotic Lactobacilli and Bifidobacteria. J Funct Foods 9:295–305. https://doi.org/10.1016/j.jff.2014.05.002

    CAS  Article  Google Scholar 

  7. 7.

    Azaïs-Braesco V, Bresson JL, Guarner F, Corthier G (2010) Not all lactic acid bacteria are probiotics, ..but some are. Br J Nutr 103(7):1079–1081. https://doi.org/10.1017/S0007114510000723

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Prado FC, Parada JL, Pandey A, Soccol CR (2008) Trends in non-dairy probiotic beverages. Food Res Int 41:111–123

    CAS  Article  Google Scholar 

  9. 9.

    Patel AR (2017) Probiotic fruit and vegetable juices - recent advances and future perspective. Int Food Res J 24(5):1850–1857

    CAS  Google Scholar 

  10. 10.

    Kausar H, Saeed S, Ahmad MM, Salam A (2012) Studies on the development and storage stability of cucumber - melon functional drink. J Agric Res 50:239–248

    Google Scholar 

  11. 11.

    Boylston TD, Vinderola CG, Ghoddusi HB, Reinheimer JA (2004) Incorporation of bifidobacteria into cheeses: challenges and rewards. Int Dairy J 14:375–387

    CAS  Article  Google Scholar 

  12. 12.

    Nualkaekul S, Salmeron I, Charalampopoulos D (2011) Investigation of the factors influencing the survival of Bifidobacterium longum in model acidic solutions and fruit juices. Food Chem 129:1037–1044. https://doi.org/10.1016/j.foodchem.2011.05.071

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Champagne CP, Gardner NJ (2005) Challenges in the addition of probiotic cultures to foods. Crit Rev Food Sci Nutr 45:61–84. https://doi.org/10.1080/10408690590900144

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Kailasapathy K, Harmstorf I, Phillips M (2008) Survival of Lactobacillus acidophilus and Bifidobacterium animalis ssp.lactis in stirred fruit yoghurts. LWT-Food Sci Technol 41:1317–1322

    CAS  Article  Google Scholar 

  15. 15.

    He Z, Wang X, Li G, Zhao Y, Zhang J, Niu C (2015) Antioxidant activity of prebiotic ginseng polysaccharides combined with potential probiotic Lactobacillus plantarum C88. Int J Food Sci Technol 50:1673–1682

    CAS  Article  Google Scholar 

  16. 16.

    Sohail A, Turner MS, Coombes A, Bostrom T, Bhandari B (2011) Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. Int J Food Microbiol 145(1):162–168. https://doi.org/10.1016/j.ijfoodmicro.2010.12.007

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Malmo C, La Storia A, Mauriello G (2013) Microencapsulation of Lactobacillus reuteri DSM 17938 cells coated in alginate beads with chitosan by spray drying to use as a probiotic cell in a chocolate soufflé. Food Bioprocess Technol 6(3):795–805

    CAS  Article  Google Scholar 

  18. 18.

    Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412. https://doi.org/10.1093/jn/125.6.1401

    CAS  Article  Google Scholar 

  19. 19.

    Markowiak P, Śliżewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9(9):1021. https://doi.org/10.3390/nu9091021

    CAS  Article  Google Scholar 

  20. 20.

    Chapman CMC, Gibson GR, Rowland I (2011) Health benefits of probiotics: are mixtures more effective than single strains? Eur J Nutr 50(1):1–17. https://doi.org/10.1007/s00394-010-0166-z

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Bandyopadhyay B, Narayan CM (2014) Probiotics, prebiotics and synbiotics - in health improvement by modulating gut microbiota: the concept revisited. Int J Curr Microbiol App Sci 3(3):410–420

    Google Scholar 

  22. 22.

    Bakker-Zierikzee AM, Alles MS, Knol J, Kok FJ, Tolboom JJ, Bindels JG (2005) Effects of infant formula containing a mixture of galacto-and fructo-oligosaccharides or viable Bifidobacterium animalis on the intestinal microflora during the first 4 months of life. Br J Nutr 94(5):783–790. https://doi.org/10.1079/BJN20051451

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Panigrahi P, Parida S, Nanda NC, Satpathy R, Pradhan L, Chandel DS, Baccaglini L, Mohapatra A, Mohapatra SS, Misra PR, Chaudhry R, Chen HH, Johnson JA, Morris JG, Paneth N, Gewolb IH (2017) A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 548:407–412. https://doi.org/10.1038/nature23480

  24. 24.

    Schrezenmeir J, De Vrese M (2001) Probiotics, prebiotics and synbiotics—approaching a definition. Am J Clin Nutr 73(2):361s–364s

    CAS  Article  Google Scholar 

  25. 25.

    Brajdes C, Vizireanu C (2013) Stability of Lactobacillus plantarum from functional beverage-based sprouted buckwheat in the conditions simulating in the upper gastrointestinal tract. Glob Res Anal 2:7–8

    Google Scholar 

  26. 26.

    Aysun O, Cigdem KG, Nihat A (2014) Synbiotics: health benefits and dairy products. J Prob Health 2:2. https://doi.org/10.4172/2329-8901.S1.018

    Article  Google Scholar 

  27. 27.

    Ghosh D, Das S, Bagchi D, Smarta RB (2013) Innovation in healthy and functional foods, 1st edn. CRC Press

  28. 28.

    Kearney SM, Gibbons SM (2018) Designing synbiotics for improved human health. Microb Biotechnol 11(1):141–144. https://doi.org/10.1111/1751-7915.12885

    Article  PubMed  Google Scholar 

  29. 29.

    De Jesus RMF, de Morais BAMM, de Morais RM (2016) Emergent sources of prebiotics: seaweeds and microalgae. Mar Drugs 14(2):27. https://doi.org/10.3390/md14020027

    CAS  Article  Google Scholar 

  30. 30.

    Lam K-L, Cheungn PC-K (2013) Non-digestible long chain beta-glucans as novel prebiotics. Bioact Carbohydr Dietary Fibre 2:45–64. https://doi.org/10.1016/j.bcdf.2013.09.001

    CAS  Article  Google Scholar 

  31. 31.

    Wichienchot S, Jatupornpipat M, Rastall RA (2010) Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chem 120(3):850–857. https://doi.org/10.1016/j.foodchem.2009.11.026

    CAS  Article  Google Scholar 

  32. 32.

    GRAS File Oligomate Yakult 2010

    Google Scholar 

  33. 33.

    Shigwedha N, Hiwilepo-Van Hal P, Jia L, Sichel L, Zhang S (2016) Prebiotics: metabolism and synbiotic synergy with probiotics in promoting health. INTECH Open. https://doi.org/10.5772/64091

  34. 34.

    Van Leeuwen SS, Kuipers BJH, Dijkhuizen L, Kamerling JP (2016) Comparative structural characterization of 7 commercial galacto-oligosaccharide (GOS) products. Carbohydr Res 425:48–58. http://doi.org/. https://doi.org/10.1016/j.carres.2016.03.006

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Vitali B, Ndagijimana M, Cruciani F, Carnevali P, Candela M, Guerzoni ME, Brigidi P (2010) Impact of a synbiotic food on the gut microbial ecology and metabolic profiles. BMC Microbiol 10(4):1–13. https://doi.org/10.1186/1471-2180-10-4

    CAS  Article  Google Scholar 

  36. 36.

    Zhang MM, Cheng JQ, Lu YR, Yi ZH, Yang P, Wu XT (2010) Use of pre-, pro- and synbiotics in patients with acute pancreatitis: a meta-analysis. World J Gastroenterol 16(31):3970–3978. https://doi.org/10.3748/wjg.v16.i31.3970

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Sekhon BS, Jairath S (2010) Prebiotics, probiotics and synbiotics: an overview. Indian J Pharm Educ 1(2):13–36

    Google Scholar 

  38. 38.

    Tan J, McKenzie C, Potamitis M, Thornburn AN, Mackay CR, Macia L (2014) The role of short-chain fatty acids in health and disease. Adv Immunol 121:91–119. https://doi.org/10.1016/B978-0-12-800100-4.00003-9

    CAS  Article  Google Scholar 

  39. 39.

    Gurry T (2017) Synbiotic approaches to human health and well-being. Microb Biotechnol 10(5):1070–1073. https://doi.org/10.1111/1751-7915.12789

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Tsilingiri K, Rescigno M (2013) Postbiotics: what else? Benefic Microbes 4(1):101–107. https://doi.org/10.3920/BM2012.0046

    CAS  Article  Google Scholar 

  41. 41.

    Freire AL, Ramos CL, Schwan RF (2017) Effect of synbiotic interaction between a fructooligosaccharide and probiotic on the kinetic fermentation and chemical profile of maize blended rice beverages. Food Res Int 100:698–707. https://doi.org/10.1016/j.foodres.2017.07.070

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Tang ML, Lodge CJ (2016) Examining the evidence for using synbiotics to treat or prevent atopic dermatitis. JAMA Pediatr 170(3):201–203. https://doi.org/10.1001/jamapediatrics.4406

    Article  PubMed  Google Scholar 

  43. 43.

    Wu XD, Chen Y, Huang W (2017) A perspective on the application of pro−/synbiotics in clinical practice. Front Microbiol 8(866):1–5. https://doi.org/10.3389/fmicb.2017.00866

    Article  Google Scholar 

  44. 44.

    Ford AC, Quigley EM, Lacy BE, Lembo AJ, Saito YA, Schiller LR et al (2014) Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am J Gastroenterol 109:1547–1561. https://doi.org/10.1038/ajg.2014.202

    Article  PubMed  Google Scholar 

  45. 45.

    Kumar A (2017) Development of synbiotic drinks from finger millet and oats. Dissertation, Punjab Agricultural University, Ludhiana-141004, India

  46. 46.

    Gawkowsky D, Chikindas ML (2013) Non-dairy probiotic beverages: the next step into human health. Benefic Microbes 4:127–142. https://doi.org/10.3920/BM2012.0030

    CAS  Article  Google Scholar 

  47. 47.

    Tripathi MK, Giri SK (2014) Probiotic functional foods: survival of probiotics during processing and storage. J Funct Foods 9:225–241. https://doi.org/10.1016/j.jff.2014.04.030

    CAS  Article  Google Scholar 

  48. 48.

    Vasudha S, Mishra HN (2013) Non dairy probiotic beverages. Int Food Res J 20(1):7–15

    CAS  Google Scholar 

  49. 49.

    Shabala L, McMeekin T, Budde BB, Siegumfeldt H (2006) Listeria innocua and Lactobacillus delbrueckii subsp bulgaricus employ different strategies to cope with acid stress. Int J Food Microbiol 110(1):1–7. https://doi.org/10.1016/j.ijfoodmicro.2006.01.026

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Sheehan VM, Ross P, Fitzgerald GF (2007) Assessing the acid tolerance and the technological robustness of probiotic cultures for fortification in fruit juices. Innov Food Sci Emerg Technol 8(2):279–284. https://doi.org/10.1016/j.ifset.2007.01.007

    CAS  Article  Google Scholar 

  51. 51.

    Nualkaekul S, Charalampopoulos D (2011) Survival of Lactobacillus plantarum in model solutions and fruit juices. Int J Food Microbiol 146(2):111–117. https://doi.org/10.1016/j.ijfoodmicro.2011.01.040

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Peres C, Hernández-Mendoza A, Malcata FX (2012) Review on fermented plant materials as carriers and sources of potentially probiotic lactic acid bacteria with an emphasis on table olives. Trends Food Sci Technol 26:31–42. https://doi.org/10.1016/j.tifs.2012.01.006

    CAS  Article  Google Scholar 

  53. 53.

    Nualkaekul S, Lenton D, Cook MT, Khutoryanskiy VV, Charalampopoulos D (2012) Chitosan coated alginate beads for the survival of microencapsulated Lactobacillus plantarum in pomegranate juice. Carbohydr Polym 90(3):1281–1287. https://doi.org/10.1016/j.carbpol.2012.06.073

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Nualkaekul S, Cook MT, Khutoryanskiy VV, Charalampopoulos D (2013) Influence of encapsulation and coating materials on the survival of Lactobacillus plantarum and Bifidobacterium longum in fruit juices. Food Res Int 53:304–311. /. https://doi.org/10.1016/j.foodres.2013.04.019

    CAS  Article  Google Scholar 

  55. 55.

    Gaanappriya M, Guhankumar P, KiruththicaV SN, Anita S (2013) Probiotication of fruit juices by Lactobacillus acidophilus. Int J Adv Biotechnol Res 4(1):935–940

    CAS  Google Scholar 

  56. 56.

    García-Ceja A, Mani-López E, Palou E, López-Malo A (2015) Viability during refrigerated storage in selected food products and during simulated gastrointestinal conditions of individual and combined lactobacilli encapsulated in alginate or alginate-chitosan. LWT Food Sci Technol 63:482–489. https://doi.org/10.1016/j.lwt.2015.03.071

    CAS  Article  Google Scholar 

  57. 57.

    Sohail A, Turner MS, Prabawati EK, Coombes AG, Bhandari B (2012) Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM encapsulated using a novel impinging aerosol method in fruit food products. Int J Food Microbiol 157(2):162–166. https://doi.org/10.1016/j.ijfoodmicro.2012.04.025

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Gandomi H, Abbaszadeh S, Misaghi A, Bokaie S, Noori N (2016) Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions. LWT-Food Sci Technol 69:365–371. https://doi.org/10.1016/j.lwt.2016.01.064

    CAS  Article  Google Scholar 

  59. 59.

    Khorasani AC, ShojaosadatiS A (2017) Improvement of probiotic survival in fruit juice and under gastrointestinal conditions using pectin-nanochitin-nanolignocellulose as a novel prebiotic gastrointestinal-resistant matrix. Appl Food Biotechnol 4(3):179–191. https://doi.org/10.22037/afb.v4i3.17337

    CAS  Article  Google Scholar 

  60. 60.

    Krasaekoopt W, Watcharapoka S (2014) Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT Food Sci Technol 57(2):761–766. https://doi.org/10.1016/j.lwt.2014.01.037

    CAS  Article  Google Scholar 

  61. 61.

    Khezri S, Razzagh M, Parvin D (2018) Fig juice fortified with inulin and Lactobacillus delbrueckii: a promising functional food. Appl Food Biotechnol 5(2):97–106. https://doi.org/10.22037/afb.v%vi%i.19844

  62. 62.

    Takagi R, Tsujikawa Y, Nomoto R, Osawa R (2014) Comparison of the growth of Lactobacillus delbrueckii, L paracasei and L plantarum on inulin in co-culture systems. Biosci Microbiota Food Health 33(4):139–146. https://doi.org/10.12938/bmfh.33.139

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Prakash KS, Bashir K, Mishra V (2017) Development of synbiotic litchi juice drink and its physiochemical, viability and sensory analysis. J Food Process Technol 8(12):1–6. https://doi.org/10.4172/2157-7110.1000708

    CAS  Article  Google Scholar 

  64. 64.

    Fratianni F, Cardinale F, Russo I, Tremonte P, Coppola R, Nazzaro F (2014) Ability of synbiotic encapsulated Saccharomyces cerevisiae boulardii to grow in berry juice and to survive under simulated gastrointestinal conditions. J Microencapsul 31:299–305. https://doi.org/10.3109/02652048.2013.871361

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    De Prisco A, Mauriello G (2016) Probiotication of foods: a focus on microencapsulation tool. Trends Food Sci Technol 48:27–39. https://doi.org/10.1016/j.tifs.2015.11.009

    CAS  Article  Google Scholar 

  66. 66.

    Nazzaro F, Fratianni F, Sada A, Orlando P (2008) Synbiotic potential of carrot juice supplemented with Lactobacillus spp. and inulin or fructooligosaccharides. J Sci Food Agric 88:2271–2276

    CAS  Article  Google Scholar 

  67. 67.

    Shokryazdan P, Faseleh JM, Liang JB, Ho YW (2017) Probiotics: from isolation to application. J Am Coll Nutr 36(8):666–676. https://doi.org/10.1080/07315724.2017.1337529

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Binns N (2013) ILSI Europe concise monograph series probiotics. Prebio Gut Microbi 2:1–31

    Google Scholar 

  69. 69.

    Saarela M, Mogensen G, Fonden R, Matto J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. Aust J Biotechnol 84(3):197–215

    CAS  Article  Google Scholar 

  70. 70.

    Corbo MR, Bevilacqua A, Petruzzi L, Casanova FP, Sinigaglia M (2014) Functional beverages: the emerging side of functional foods commercial trends, research, and health implications. Compr Rev Food Sci Food Saf 13(6):1192–1206. https://doi.org/10.1111/1541-4337.12109

    CAS  Article  Google Scholar 

  71. 71.

    Chandrasekaran M (2016) Emerging trends and future perspectives. In: Chandrasekaran M (ed) Enzymes in food and beverages processing. CRC Press, Tyler & Francis Group, pp 505–516

    Google Scholar 

  72. 72.

    Perricone M, Bevilacqua A, Altieri C, Sinigaglia M, Corbo MR (2015) Challenges for the production of probiotic fruit juices. Beverages 1:95–103. https://doi.org/10.3390/beverages1020095

    CAS  Article  Google Scholar 

  73. 73.

    Jankovic I, Sybesma W, Phothirath P, Ananta E, Mercenier A (2010) Application of probiotics in food products—challenges and new approaches. Curr Opin Biotechnol 21(2):175–181. https://doi.org/10.1016/j.copbio.2010.03.009

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Vijaya KB, Vijayendra SV, Reddy OV (2015) Trends in dairy and non-dairy probiotic products - a review. J Food Sci Technol 52(10):6112–6124. https://doi.org/10.1007/s13197-015-1795-2

    CAS  Article  Google Scholar 

  75. 75.

    Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89. https://doi.org/10.1016/j.tibtech.2008.10.010

    CAS  Article  Google Scholar 

  76. 76.

    Douillard FP, de Vos WM (2014) Functional genomics of lactic acid bacteria: from food to health. Microb Cell Factories 13(Suppl 1):S8. https://doi.org/10.1186/1475-2859-13-S1-S8

    Article  Google Scholar 

  77. 77.

    Wu C, Huang J, Zhou R (2017) Genomics of lactic acid bacteria: current status and potential applications. Crit Rev Microbiol 43(4):393–404. https://doi.org/10.1080/1040841X.2016.1179623

    Article  PubMed  Google Scholar 

  78. 78.

    Vandenplas Y, Huys G, Daube G (2015) Probiotics: an update. J Pediatr 91(1):6–21. https://doi.org/10.1016/j.jped.2014.08.005

    Article  Google Scholar 

  79. 79.

    Akgül T, Karakan T (2018) The role of probiotics in women with recurrent urinary tract infections. Turk J Urol 44(5):377–383. https://doi.org/10.5152/tud.2018.48742

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support of the Romanian National Authority for Scientific Research and Innovation, CCCDI–UEFSCDI, project number PN-III-P3-3.5-EUK-2016-0015.

Funding

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CCCDI–UEFSCDI, project number PN-III-P3-3.5-EUK-2016-0015.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Diana Pasarin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

We state that this article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rovinaru, C., Pasarin, D. Application of Microencapsulated Synbiotics in Fruit-Based Beverages. Probiotics & Antimicro. Prot. 12, 764–773 (2020). https://doi.org/10.1007/s12602-019-09579-w

Download citation

Keywords

  • Fruit beverages
  • Lactic acid bacteria
  • Microencapsulation
  • Prebiotic
  • Probiotic
  • Synbiotic