The Effects of a Synbiotic Mixture of Galacto-Oligosaccharides and Bacillus Strains in Caspian Salmon, Salmo trutta caspius Fingerlings

Abstract

The effect of dietary supplementation with a synbiotic mixture of galacto-oligosaccharides (GOS) and Bacillus spp. was examined in Caspian salmon, Salmo trutta caspius (Kessler, 1877) fingerlings. Caspian salmon fed with the synbiotic diet had significantly higher weight gain rate, protein efficiency ratio, and survival rate, as well as lower feed conversion ratio, compared to the control group (P < 0.05). The serum protein, albumin, globulin, and lactate dehydrogenase levels of the fish fed with the synbiotic diet were significantly higher than the control group (P < 0.05), while the serum alkaline phosphatase levels were significantly lower (P < 0.05). The activities of the innate immune response parameters, including lysozyme, superoxide dismutase, and catalase were significantly higher in the Caspian salmon fed with the synbiotic diet (P < 0.05). The gut microbiota of the Caspian salmon fed with the synbiotic diet contained significantly elevated total viable aerobic bacterial counts (TVABCs), lactic acid bacteria (LAB) levels, and LAB/TVABCs ratio (P < 0.05). Additionally, the gut activities of amylase, trypsin, and chymotrypsin in the gut, as well as the trypsin/chymotrypsin ratio, were significantly increased in the fish that received the synbiotic diet (P < 0.05). In conclusion, the combined GOS and Bacillus spp. supplement positively affected the growth, survival rate, immunobiochemical parameters, digestive activity, and beneficial microbial density in the gut of Caspian salmon fingerlings.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Meena D, Dad P, Kumar S, Mandal S, Prusty A, Singh SK, Akhtar MS, Behera BK, Kumar K, Pal AK, Mukherjee SC (2013) Beta-glucan: an ideal immunostimulants in aquaculture (a review). Fish Physiol Biochem 39(3):431–457

    CAS  PubMed  Google Scholar 

  2. 2.

    Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RTM, Bøgwald J, Castex M, Ringø E (2010) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302(1–2):1–18

    Google Scholar 

  3. 3.

    Morelli L, Capurso L (2012) FAO/WHO guidelines on probiotics: 10 years later. J Clin Gastroenterol 46(Suppl):S1–S2

    PubMed  Google Scholar 

  4. 4.

    Pineiro M, Asp NG, Reid G, Macfarlane S, Morelli L, Brunser O, Tuohy K (2008) FAO technical meeting on prebiotics. J Clin Gastroenterol 42:S156–S159

    PubMed  Google Scholar 

  5. 5.

    Huynh T-G, Shiu Y-L, Nguyen T-P, Truong Q-P, Chen J-C, Liu C-H (2017) Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: a review. Fish Shellfish Immunol 64:367–382

    CAS  PubMed  Google Scholar 

  6. 6.

    Nakayama T, Lu H, Nomura N (2009) Inhibitory effects of Bacillus probionts on growth and toxin production of Vibrio harveyi pathogens of shrimp. Lett Appl Microbial 49(6):679–684

    CAS  Google Scholar 

  7. 7.

    Yang ST, Silva EM (1995) Novel products and new technologies for use of a familiar carbohydrate, milk lactose. J Dairy Sci 78(11):2541–2562

    CAS  PubMed  Google Scholar 

  8. 8.

    Biedrzycka E, Bielecka M (2004) Prebiotic effectiveness of fructans of different degrees of polymerization. Trends Food Sci Technol 15(3–4):170–175

    CAS  Google Scholar 

  9. 9.

    Grisdale-Helland B, Helland SJ, Gatlin DM (2008) The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). Aquaculture 283(1–4):163–167

    CAS  Google Scholar 

  10. 10.

    Hoseinifar SH, Khalili M, Khoshbavar Rostami H, Esteban MA (2013) Dietary galactooligosaccharide affects intestinal microbiota, stress resistance, and performance of Caspian roach (Rutilus rutilus) fry. Fish Shellfish Immunol 35(5):1416–1420

    CAS  PubMed  Google Scholar 

  11. 11.

    Hoseinifar SH, Mirvaghefi A, Amoozegar MA, Sharifian M, Esteban MA (2015) Modulation of innate immune response, mucosal parameters and disease resistance in rainbow trout (Oncorhynchus mykiss) upon synbiotic feeding. Fish Shellfish Immunol 45(1):27–32

    CAS  PubMed  Google Scholar 

  12. 12.

    Hoseinifar SH, Ahmadi A, Raeisi M, Hoseini SM, Khalili M, Behnampour N (2017) Comparative study on immunomodulatory and growth enhancing effects of three prebiotics (galactooligosaccharide, fructooligosaccharide and inulin) in common carp (Cyprinus carpio). Aquac Res 48(7):3298–3307

    CAS  Google Scholar 

  13. 13.

    Modanloo M, Soltanian S, Akhlaghi M, Hoseinifar SH (2017) The effects of single or combined administration of galactooligosaccharide and Pediococcus acidilactici on cutaneous mucus immune parameters, humoral immune responses and immune related genes expression in common carp (Cyprinus carpio) fingerlings. Fish Shellfish Immunol 70:391–397

    CAS  PubMed  Google Scholar 

  14. 14.

    Hoseinifar SH, Zoheiri F, Dadar M, Rufchaei R, Ringø E (2016) Dietary galactooligosaccharide elicits positive effects on non-specific immune parameters and growth performance in Caspian white fish (Rutilus frisii kutum) fry. Fish Shellfish Immunol 56:467–472

    CAS  PubMed  Google Scholar 

  15. 15.

    Safari O, Paolucci M (2017) Modulation of growth performance, immunity, and disease resistance in narrow-clawed crayfish, Astacus leptodactylus leptodactylus (Eschscholtz, 1823) upon synbiotic feeding. Aquaculture 479:333–341

    CAS  Google Scholar 

  16. 16.

    Yousefi S, Hoseinifar SH, Paknejad H, Hajimoradloo A (2018) The effects of dietary supplement of galactooligosaccharide on innate immunity, immune related genes expression and growth performance in zebrafish (Danio rerio). Fish Shellfish Immunol 73:192–196

    CAS  PubMed  Google Scholar 

  17. 17.

    Rahimnejad S, Guardiola FA, Leclercq E, Esteban MÁ, Castex M, Sotoudeh E, Sang-Min L (2018) Effects of dietary supplementation with Pediococcus acidilactici MA18/5M, galactooligosaccharide and their synbiotic on growth, innate immunity and disease resistance of rockfish (Sebastes schlegeli). Aquaculture 482:36–44

    CAS  Google Scholar 

  18. 18.

    Niksirat H, Abdoli A (2009) The status of the critically endangered Caspian brown trout, Salmo trutta caspius, during recent decades in the southern Caspian Sea basin (Osteichthyes: Salmonidae). Zool Middle east 46(1):55–60

    Google Scholar 

  19. 19.

    Quillet E, Fauré A, Chevassus B, Kreig F, Harache Y, Arzel J, Métailler R, Boeuf G (1992) The potential of brown trout (Salmo trutta L.) for mariculture in temperate waters. Icel Agric Sci 6:63–76

    Google Scholar 

  20. 20.

    Kiabi BH, Abdoli A, Naderi M (1999) Status of the fish fauna in the South Caspian Basin of Iran. Zool Middle East 18(1):57–65

    Google Scholar 

  21. 21.

    Sarvi K, Niksirat H, Mojazi Amiri B, Mirtorabi SM, Rafiee GR, Bakhtiyari M (2006) Cryopreservation of semen from the endangered Caspian brown trout (Salmo trutta caspius). Aquaculture 479:564–569

    Google Scholar 

  22. 22.

    Ramezani H (2009) Effects of different protein and energy levels on growth performance of Caspian brown trout, Salmo trutta caspius (Kessler, 1877). J Fish Aquat Sci 4(4):203–209

    CAS  Google Scholar 

  23. 23.

    Aftabgard M, Salarzadeh A, Mohseni M, Bahri Shabanipour AH, Zorriehzahra MEJ (2017) The combined efficiency of dietary isomaltooligosaccharides and Bacillus spp. on the growth, hemato-serological, and intestinal microbiota indices of Caspian brown trout (Salmo trutta caspius Kessler, 1877). Probiotics Antimicro Prot. https://doi.org/10.1007/s12602-017-9361-z

  24. 24.

    Kumar S, Sahu NP, Pal AK, Choudhury D, Yengkokpam S, Mukherjee SC (2005) Efffect of dietary carbohydrate on heamatology, respiratory burst activity and histological changes in L. rohita juveniles. Fish Shellfish Immunol 19(4):331–344

    CAS  PubMed  Google Scholar 

  25. 25.

    Borges A, Scotti LV, Siqueira DR, Jurinitz DF, Wassermann GF (2004) Hematologic and serum biochemical values for jundia (Rhamdia quelen). Fish Physiol Biochem 30(1):21–25

    CAS  Google Scholar 

  26. 26.

    Guzmán-Villanueva LT, Ascencio-Valle F, Macías-Rodríguez ME, Tovar-Ramírez D (2014) Effects of dietary b-1,3/1,6-glucan on the antioxidant and digestive enzyme activities of Pacific red snapper (Lutjanus peru) after exposure to lipopolysaccharides. Fish Physiol Biochem 40(3):827–837

    PubMed  Google Scholar 

  27. 27.

    Hidalgo M, Urea E, Sanz A (1999) Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture 170(3–4):267–283

    CAS  Google Scholar 

  28. 28.

    Yanbo W, Zirong X (2006) Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Anim Feed Sci Technol 127(3–4):283–292

    Google Scholar 

  29. 29.

    Bernfeld P (1955) Amylases α and β. Methods Enzymol 1:149–158

    CAS  Google Scholar 

  30. 30.

    Erlanger BF, Kokowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95(2):271–278

    CAS  PubMed  Google Scholar 

  31. 31.

    Del Mar EG, Largman C, Brodrick JW, Geokas MC (1979) A sensitive new substrate for chymotrypsin. Anal Biochem 99(2):316–320

    Google Scholar 

  32. 32.

    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Daniels CL, Merrifield DL, Boothroyd DP (2010) Effect of dietary Bacillus spp. and mannan oligosaccharides (MOS) on European lobster (Homarus gammarus L.) larvae growth performance, gut morphology and gut microbiota. Aquaculture 304(1–4):49–57

    CAS  Google Scholar 

  34. 34.

    Amirkolaie AK, Karimzadeh S, Miandehy SP (2017) The effects of dietary Betaplus® and TechnoMos® on growth performance, blood parameters, and intestinal microflora in juvenile kutum, Rutilus kutum (Kamensky, 1901). J Appl Ichthyol 33(3):491–497

    CAS  Google Scholar 

  35. 35.

    Babin PJ, Vernier JM (1989) Plasma lipoproteins in fish. J Lipid Res 30(4):467–489

    CAS  PubMed  Google Scholar 

  36. 36.

    Denev S, Staykov Y, Moutafchieva R, Beev G (2009) Microbial ecology of the gastrointestinal tract of fish and the potential application of probiotics and prebiotics in finfish aquaculture. Int Aquat Res 1:1–29

    Google Scholar 

  37. 37.

    Ye J-D, Wang K, Li F-D, Sun Y-Z (2011) Single or combined effects of fructo- and mannan oligosaccharide supplements and Bacillus clausii on the growth, feed utilization, body composition, digestive enzyme activity, innate immune response and lipid metabolism of the Japanese flounder Paralichthys olivaceus. Aquac Nutr 17(4):e902–e911

    Google Scholar 

  38. 38.

    Trautwein EA, Rieckhoff D, Erbersdobler HF (1998) Dietary inulin lowers plasma cholesterol and triacylglycerol and alters bile acid profile in hamsters. J Nutr 128(11):1937–1943

    CAS  PubMed  Google Scholar 

  39. 39.

    Parnami S, Sheth M (2011) Indian fermented milk (Dahi) fortified with probiotic bacteria and inulin improves serum lipid, blood glucose levels and gut microflora. J Indian Acad Geriatr 7(1):12–21

    Google Scholar 

  40. 40.

    Wolever TM, Fernandes J, Rao AV (1996) Serum acetate:propionate ratio is related to serum cholesterol in men but not women. J Nutr 126(11):2790–2797

    CAS  PubMed  Google Scholar 

  41. 41.

    Kumar V, Makkar HP, Amselgruber W, Becker K (2010) Physiological: haematological and histopathological responses in common carp (Cyprinus carpio L.) fingerlings fed with differently detoxified Jatropha curcas kernel meal. Food Chem Toxicol 48(8–9):2063–2072

    CAS  PubMed  Google Scholar 

  42. 42.

    Ramesh D, Souissi S (2018) Effects of potential probiotic Bacillus subtilis KADR1 and its subcellular components on immune responses and disease resistance in Labeo rohita. Aquac Res 49(1):367–377

    CAS  Google Scholar 

  43. 43.

    Rao YV, Romesh M, Singh A, Chakrabarti R (2004) Potentiation of antibody production in Indian major carp Labeo rohita, rohu, by Achyranthes aspera as a herbal feed ingredient. Aquaculture 238(1–4):67–73

    CAS  Google Scholar 

  44. 44.

    Don BR, Kaysen G (2004) Serum albumin: relationship to inflammation and nutrition. Semin Dial 17(6):432–437

    PubMed  Google Scholar 

  45. 45.

    Kaburagi T, Yamano T, Fukushima Y, Yoshino H, Mito N, Sato K (2007) Effect of Lactobacillus johnsonii La1 on immune function and serum albumin in aged and malnourished aged mice. Nutrition 23(4):342–350

    CAS  PubMed  Google Scholar 

  46. 46.

    Zhang C-N, Li X-F, Xu W-N, Jiang G-Z, Lu K-L, Wang L-N, Liu W-B (2013) Combined effects of dietary fructooligosaccharide supplementation and Bacillus licheniformis on innate immunity, antioxidant capability and disease resistance of triangular bream (Megalobrama terminalis). Fish Shellfish Immunol 35(5):1380–1386

    CAS  PubMed  Google Scholar 

  47. 47.

    Peres H, Santos S, Oliva-Teles A (2012) Selected plasma biochemistry parameters in gilthead seabream (Sparus aurata) juveniles. J Appl Ichthyol 29:630–636

    Google Scholar 

  48. 48.

    Mueller P, Diamond J (2001) Metabolic rate and environmental productivity: well-provisioned animals evolved to run and idle fast. Proc Natl Acad Sci U S A 98(22):12550–12554

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Abhijith BD, Ramesh M, Poopal RK (2016) Responses of metabolic and antioxidant enzymatic activities in gill, liver and plasma of Catla catla during methyl parathion exposure. J Basic Appl Zool 77:31–40

    CAS  Google Scholar 

  50. 50.

    Diamantino TC, Almeida E, Soares AMVM, Guilhermino L (2001) Lactate dehydrogenase activity as an effect criterion in toxicity tests with Daphnia magna status. Chemosphere 45(4–5):553–560

    CAS  PubMed  Google Scholar 

  51. 51.

    Abston PA, Yarbrough JD (1976) The in vivo effect of mirex on soluble hepatic enzymes in the rat. Pestic Biochem Physiol 6(2):192–199

    CAS  Google Scholar 

  52. 52.

    Dutil J-D, Lambert Y, Guderley H, Blier PU, Pelletier D, Desroches M (1998) Nucleic acids and enzymes in Atlantic cod (Gadus morhua) differing in condition and growth rate trajectories. Can J Fish Aquat Sci 55(4):788–795

    CAS  Google Scholar 

  53. 53.

    Ghoneim MAE, Moselhy SS (2014) Impact of probiotic-supplemented diet on the expression level of lactate dehydrogenase in the leukocytes of rabbits. Toxicol Ind Health 30(3):225–232

    CAS  PubMed  Google Scholar 

  54. 54.

    Rajabipour F, Shahsavani D, Moghimi A, Jamili S, Mashaii N (2010) Comparision of serum enzyme activity in great stugeon, Huso huso, cultured in brackish and fresh water earth ponds in Iran. Comp Clin Pathol 19(3):301–305

    CAS  Google Scholar 

  55. 55.

    Saulnier DM, Kolida K, Gibson GR (2009) Microbiology of the human intestinal tract and approaches for its dietary modulation. Curr Pharm Design 15(13):1403–1414

    CAS  Google Scholar 

  56. 56.

    Hall P, Cash J (2012) What is the real function of the liver ‘function’ tests? Ulster Med J 81(1):30–36

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Hyder MA, Hasan M, Mohieldein AH (2013) Comparative levels of ALT, AST, ALP and GGT in liver associated diseases. Eur J Exp Biol 3(2):280–284

    CAS  Google Scholar 

  58. 58.

    Magnadóttir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20(2):137–151

    PubMed  Google Scholar 

  59. 59.

    Bae JY, Park GH, Lee JY, Okorie OE, Bai SC (2012) Effects of dietary propolis supplementation on growth performance, immune responses, disease resistance and body composition of juvenile eel, Anguilla japonica. Aquac Int 20(3):513–523

    CAS  Google Scholar 

  60. 60.

    Montalban-Arques A, De Schryver P, Bossier P, Gorkiewicz G, Mulero V, Gatlin DM, Galindo-Villegas J (2015) Selective manipulation of the gut microbiota improves immune status in vertebrates. Front Immunol 6(512):1–14

    Google Scholar 

  61. 61.

    Lin S, Mao S, Guan Y, Luo L, Lio L, Pan Y (2012) Effects of dietary chitosan oligosaccharides and Bacillus coagulans on the growth innate immunity and resistance of koi (Cyprinus carpio koi). Aquaculture 342–343:36–41

    Google Scholar 

  62. 62.

    Peres H, Costas B, Perez-Jimenez A, Guerreiro I, Oliva-Teles A (2015) Reference values for selected hematological and serum biochemical parameters of Senegalese sole (Solea senegalensis Kaup, 1858) juveniles under intensive aquaculture conditions. J Appl Ichthyol 31(1):65–71

    CAS  Google Scholar 

  63. 63.

    Tan X, Sun Z, Chen S, Chen S, Huang Z, Zhou C, Zou C, Liu Q, Ye H, Lin H, Ye C, Wang A (2017) Effects of dietary dandelion extracts on growth performance, body composition, plasma biochemical parameters, immune responses and disease resistance of juvenile golden pompano Trachinotus ovatus. Fish Shellfish Immunol 66:198–206

    CAS  PubMed  Google Scholar 

  64. 64.

    Panigrahi A, Kiron V, Satoh S, Watanabe T (2010) Probiotic bacteria lactobacillus rhamnosus influences the blood profile in rainbow trout Oncorhynchus mykiss (Walbaum). Fish Physiol Biochem 36(4):969–977

    CAS  PubMed  Google Scholar 

  65. 65.

    Karasov WH (1992) Test of the adaptive modulation hypothesis for dietary control of intestinal transport. Am J Phys 263:R496–R502

    CAS  Google Scholar 

  66. 66.

    Bairagi A, Sarkar Ghosh K, Sen SK, Ray AK (2004) Evaluation of the nutritive value of Leucaena leucocephala leaf meal, inoculated with fish intestinal bacteria Bacillus subtilis and Bacillus circulans in formulated diets for rohu, Labeo rohita (Hamilton) fingerlings. Aquac Res 35(5):436–446

    Google Scholar 

  67. 67.

    Ochoa-Solano JL, Olmos-Soto J (2006) The functional property of Bacillus for shrimp feeds. Food Microbiol 23(6):519–525

    Google Scholar 

  68. 68.

    Mohapatra S, Chakraborty T, Prusty AK, Das P, Paniprasad K, Mohanta KN (2012) Use of different microbial probiotics in the diet of rohu, Labeo rohita fingerlings: effects on growth, nutrient digestibility and retention, digestive enzyme activities and intestinal microflora. Aquac Nutr 18(1):1–11

    CAS  Google Scholar 

  69. 69.

    Vine NG, Leukes WD, Kaiser H (2006) Probiotics in marine larviculture. FEMS Microbiol Rev 30(3):404–427

    CAS  PubMed  Google Scholar 

  70. 70.

    Sunde J, Taranger GL, Rungruangsak-Torrissen K (2001) Digestive protease activities and free amino acids in white muscle as indicators for feed conversion efficiency and growth rate in Atlantic salmon (Salmo salar L.). Fish Physiol Biochem 25(4):335–345

    Google Scholar 

  71. 71.

    Rungruangsak-Torrissen K, Fosseidengen JE (2007) Effect of artificial feeding on digestive efficiency, growth and qualities of muscle and oocyte of maturing Atlantic mackerel (Scomber scombrus L.). J Food Biochem 31(6):726–747

    CAS  Google Scholar 

  72. 72.

    Xing RE, Yang HY, Wang XQ, Yu HH, Liu S, Chen XL, Li PC (2018) Effect of enzymatically hydrolyzed scallop visceral protein powder used as a replacement of fish meal on the growth performance, immune responses, intestinal microbiota and intestinal morphology of broiler chickens. Livest Sci 207:15–24

    Google Scholar 

  73. 73.

    Vaezi M, Khara H, Shenavar A (2016) Synbiotic (biomin imbo) alters gut bacterial microflora of Russian sturgeon, Acipenser guldenstadti (Brandt & Ratzeburg, 1833) in a time-dependent pattern. J Parasit Dis 40(4):1189–1192

    PubMed  Google Scholar 

  74. 74.

    Balcázar JL, de Blas I, Ruiz-Zarzuela I, Vendrell D, Gironés O, Muzquiz JL (2007) Enhancement of the immune response and protection induced by probiotic lactic acid bacteria against furunculosis in rainbow trout (Oncorhynchus mykiss). FEMS Immunol Med Microbiol 51(1):185–193

    PubMed  Google Scholar 

  75. 75.

    Caipang CMA, Lazado CC (2015) Nutritional impacts on fish mucosa: immunostimulants, pre- and probiotics. In: Peatman BHB (ed) Mucosal health in aquaculture. Academic Press, San Diego, pp 211–272

    Google Scholar 

  76. 76.

    Cummings JH, Macfarlane GT (2002) Gastrointestinal effects of prebiotics. Br J Nutr 87(Suppl 2):S145–S151

    CAS  PubMed  Google Scholar 

  77. 77.

    Thongaram T, Hoeflinger JL, Chow J, Miller MJ (2017) Prebiotic galactooligosaccharide metabolism by probiotic lactobacilli and bifidobacteria. J Agric Food Chem 65(20):4184–4192

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to the staff at the CFRC for providing the facilities and their technical assistance for this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maryam Aftabgard.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aftabgard, M., Salarzadeh, A. & Mohseni, M. The Effects of a Synbiotic Mixture of Galacto-Oligosaccharides and Bacillus Strains in Caspian Salmon, Salmo trutta caspius Fingerlings. Probiotics & Antimicro. Prot. 11, 1300–1308 (2019). https://doi.org/10.1007/s12602-018-9498-4

Download citation

Keywords

  • Galacto-oligosaccharides
  • Bacillus spp.
  • Digestive enzymes
  • Innate immunity
  • Gut lactic acid bacteria
  • Caspian salmon