Skip to main content

Advertisement

Log in

Possible Probiotic Lactic Acid Bacteria Isolated from Oysters (Crassostrea gigas)

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

We attempted to isolate lactic acid bacteria (LAB) from the marine oyster (Crassostrea gigas) and selected several environmental stress-resistant isolates for the development of a future probiotic adjuvant for marine aquaculture. Twenty-six presumptive LAB isolates were extracted from oysters and screened (by an agar diffusion assay) for antimicrobial activity toward various pathogens: Vibrio parahaemolyticus, Streptococcus iniae, and Edwardsiella tarda. Eight isolates had an antibacterial activity toward V. parahaemolyticus; in particular, 6 isolates showed a growth-inhibitory activity, with inhibition zone diameters > 15 mm. Of these, 5 isolates (JL17, JL18, JL28, HL7, and HL32) were also active against S. iniae and E. tarda. Enterococcus faecium HL7 was selected as the isolate most resistant to environmental stressors: the minimum NaCl, ethanol, and hydrogen peroxide concentrations at which HL7 cells lost their viability were 1.9 M, 11%, and 0.013%, respectively. When an antibiotic sensitivity test was performed on E. faecium HL7, this isolate was found to be resistant to trimethoprim/sulfamethoxazole, cephalothin, ampicillin, rifampin, gentamicin, cefotaxime, cefepime, cefotetan, nalidixic acid, and kanamycin. While the oyster model studies provided indication that E. faecium HL7 could be a good candidate as biocontrol agent against V. vulnificus, further optimization is needed in the actual animal rearing situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol Biol Rev 64:655–671

    Article  CAS  Google Scholar 

  2. Korean Food and Drug Administration (2007) Monitoring of antimicrobial resistance on the food animals and meats. Korean Food and Drug Administration, Seoul, Korea

  3. World Health Organization: Food and Agriculture Organization of the United Nations (2006) Probiotics in food. Health and nutritional properties and guidelines for evaluation. FAO Food and Nutrition Paper 85:1–50

  4. Paillard C, Le Roux F, Borreg JJ (2004) Bacterial disease in marine bivalves, a review of recent studies: trends and evolution. Aquat Living Resour 17:477–498

    Article  Google Scholar 

  5. Karim M, Zhao W, Rowley D, Nelson D, Chiarri DG (2013) Probiotic strains for shellfish aquaculture: protection of eastern oyster, Crassostrea virginica, larvae and juveniles againsl bacterial challenge. J Shellfish Res 32:401–408

    Article  Google Scholar 

  6. Rossland E, Borge GIA, Langsrud T, Sorhaug T (2003) Inhibition of Bacillus cereus by strains of Lactobacillus and Lactococcus in milk. Int J Food Microbiol 89:205–212

    Article  PubMed  Google Scholar 

  7. Sanni AI, Onilude AA, Ogunbanwo ST, Smith SI (1999) Antagonistic activity of bacteriocin produced by Lactobacillus species from Ogi, an indigenous fermented food. J Basic Microbiol 39:189–195

    Article  CAS  PubMed  Google Scholar 

  8. Mergeay M (2000) Bacteria adapted to industrial biotopes: metal-resistant ralstonia. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. American Society for Microbiology, Washington DC, pp 403–414

    Google Scholar 

  9. Rogosa M, Mitchell JA, Wiseman RF (1951) A selective medium for the isolation and enumeration of oral and fecal lactobacilli. J Bacteriol 62:132–133

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Claus D (1992) A standardized Gram staining procedure. World J Microbiol Biotechnol 8:451–452

    Article  CAS  PubMed  Google Scholar 

  11. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecul Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  12. Vinderola CG, Reinheimer JA (2003) Lactic acid starter and probiotic bacteria, a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res Int 36:895–904

    Article  CAS  Google Scholar 

  13. NCCLS (2003) Performance standards for antimicrobial disc susceptibility tests: approved standard, National Committee for Clinical Laboratory Standard of Antimicrobial susceptibility, document M2-AS. Pennsylvania, USA

  14. Ripamonti B, Agazzi A, Bersani C (2011) Screening of species-specific lactic acid bacteria for veal calves multi-strain probiotic adjuncts. Anaerobe 17:97–105

    Article  PubMed  Google Scholar 

  15. Dashkevicz MP, Feighner SD (1989) Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Appl Environ Microbiol 55:11–16

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Argyri AA, Zoumpopoulou G, Karatzas KAG, Tsakalidou E, Nychas GJE, Panagou EZ (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol 33:282–291

    Article  CAS  PubMed  Google Scholar 

  17. Patel AK, Ahire JJ, Pawar SP, Chaudhari BL, Chincholkar SB (2009) Comparative accounts of probiotic characteristics of Bacillus strains isolated food wastes. Food Res Int 42:505–510

    Article  CAS  Google Scholar 

  18. Gatesoupe F (2008) Updating the importance of lactic acid bacteria in fish farming: natural occurrence and probiotic treatments. J Mol Microbiol Biotechnol 14:107–114

    Article  CAS  PubMed  Google Scholar 

  19. Aly SM, Abdel-Galil AY, Abdel-Aziz GA, Mohamed MF (2008) Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol 25:128–136

    Article  CAS  PubMed  Google Scholar 

  20. Van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 82:187–216

    Article  PubMed  Google Scholar 

  21. Reinheimer JA, Demkow MR, Candioti MC (1990) Inhibition of coliform bacteria by lactic acid cultures. Australian J Dairy Technol 45:5–9

    Google Scholar 

  22. Tejero-Sariñena S, Barlow J, Costabile A, Gibson GR, Rowland I (2012) In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: evidence for the effects of organic acids. Anaerobe 18:530–538

    Article  PubMed  Google Scholar 

  23. Dimitonova SP, Svetla TD, Julia PS, Boris VB (2007) Antimicrobial activity and protective properties of vaginal lactobacilli from healthy Bulgarian women. Anaerobe 13:178–184

    Article  CAS  PubMed  Google Scholar 

  24. Mataragas M, Drosinos EH, Metaxopoulos J (2003) Antagonistic activity of lactic acid bacteria against Listeria monocytogenes in sliced cooked cured pork shoulder stored under vacuum or modified atmosphere at 4 ±2°C. Food Microbiol 20:259–265

    Article  Google Scholar 

  25. Gao Y, van Belkum MJ, Stiles ME (1999) The outer membrane of gram-negative bacteria inhibits antibacterial activity of brochocin-C. Appl Environ Microbiol 65:4329–4333

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kanmani P, Kumar RS, Yuvaraj N, Paari KA, Pattukumar V, Arul V (2011) Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro. Bioresour Technol 41:40–52

    CAS  Google Scholar 

  27. Chandramouli V, Kailaspathy K, Peiris P, Jones M (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods 56:27–35

    Article  CAS  PubMed  Google Scholar 

  28. Kailasapathy K (2005) Survival of free and encapsulated probiotic bacteria and effect on the sensory properties of yoghurt. Food Sci Technol 1:1–2

    Google Scholar 

  29. Salminen MK, Rautelin H, Tynkkynen S, Poussa T, Saxelin M, Valtonen V, Jarvinen A (2004) Lactobacillus bacteremia, clinical significance, and patient outcome, with special focus on probiotic L. Rhamnosus GG. Clin Infect Dis 38:62–69

    Article  PubMed  Google Scholar 

  30. Cebeci A, Gurakan C (2003) Properties of potential probiotic Lactobacillus plantarum strains. Food Microbiol 20:511–518

    Article  Google Scholar 

  31. Allameh SK (2012) Isolation and characterization of lactic acid bacteria from gastrointestinal tract of snakehead (Channa striatus, bloch) as probiotic for freshwater fish. Ph.D. Thesis. University of Putra, Malaysia

  32. Kim DH, Austin B (2008) Characterization of probiotic carnobacteria isolated from rainbow trout (Oncorhynchus mykiss) intestine. Lett Appl Microbiol 47:141–147

    Article  CAS  PubMed  Google Scholar 

  33. Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2003) Impedimetric method for estimating the residual activity of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. Int Dairy J 13:463–468

    Article  Google Scholar 

  34. Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 61:3592–3597

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shivram PL, Vishwanath PP (2012) Assessment of probiotic potential of Lactobacillus sp. isolated from cheese and preparation of probiotic ice cream. Int J Res Ayurveda Pharm 3:532–536

    Google Scholar 

  36. Dixit G, Samarth D, Tale V, Bhadekar R (2013) Comparative studies on potential probiotic characteristics of Lactobacillus acidophilus strains. Eur J Biosci 7:1–9

    Google Scholar 

  37. Yoshiyuki I, Yasushi K, Kensuke A, Yoshiko H, Takashi S, Tadao S (2009) Conjugative plasmid from Lactobacillus gasseri LA39 that carries genes for production of and immunity to the circular bacteriocin gassericin A. Appl Environ Microbiol 75:6340–6351

    Article  Google Scholar 

  38. Liasi SA, Azmi TI, Hassan MD, Shuhaimi M, Rosfarizan M, Ariff AB (2009) Antimicrobial activity and antibiotic sensitivity of three isolates of lactic acid bacteria from fermented fish product, Budu, Malays. J Microbiol 5:33–37

    Google Scholar 

  39. Rauta PR, Dhupal M, Nayak B (2013) Screening and characterization of potential probiotic lactic acid bacteria isolated from vegetable waste and fish intestine. Int J Curr Microbiol Appl Sci 2:234–244

    Google Scholar 

  40. Morelli L (2007) In vitro assessment of probiotic bacteria: from survival to functionality. Int Dairy J 17:1278–1283

    Article  Google Scholar 

  41. Chou L, Weimer B (1999) Isolation and characterization of acid and bile-tolerant isolates from strains of Lactobacillus acidophilus. J Dairy Sci 82:23–31

    Article  CAS  PubMed  Google Scholar 

  42. Succi M, Tremonte P, Reale A, Sorrentino E, Grazia L, Pacifico S (2005) Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol 244:129–137

    Article  CAS  Google Scholar 

  43. Corzo G, Gilliland SE (1999) Bile salt hydrolase activity of three strains of Lactobacillus acidophilus. J Dairy Sci 82:472–480

    Article  CAS  PubMed  Google Scholar 

  44. Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pedersen K, Tannock GW (1989) Colonization of the porcine gastrointestinal tract by lactobacilli. Appl Environ Microb 55:279–283

    CAS  Google Scholar 

  46. Bellon-Fontaine MN, Rault J, Van Oss CJ (1996) Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells. Colloid Surf B 7:47–53

    Article  CAS  Google Scholar 

  47. Groubert TN, Oliver JD (1994) Interaction of Vibrio vulnificus and the eastern oyster, Crassostrea virginica. J Food Prot 57:224–228

    Article  PubMed  Google Scholar 

  48. Audemard C, Kator HI, Rhodes MW, Gallivan T, Erskine AJ, Leggett AT, Reece KS (2011) High salinity relay as a postharvest processing strategy to reduce Vibrio vulnificus levels in Chesapeake Bay oysters (Crassostrea virginica). J Food Prot 74:1902–1907

    Article  PubMed  Google Scholar 

  49. Larsen AM, Rikard FS, Walton WC, Arias CR (2015) Temperature effect on high salinity depuration of Vibrio vulnificus and V. parahaemolyticus from the Eastern oyster (Crassostrea virginica). Int J Food Microbiol 192:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Seong So.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, CH., Gu, T. & So, JS. Possible Probiotic Lactic Acid Bacteria Isolated from Oysters (Crassostrea gigas). Probiotics & Antimicro. Prot. 10, 728–739 (2018). https://doi.org/10.1007/s12602-017-9315-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9315-5

Keywords

Navigation