Advertisement

Ocean Science Journal

, Volume 53, Issue 2, pp 215–224 | Cite as

The Effects of Ocean Acidification on Feeding and Contest Behaviour by the Beadlet Anemone Actinia equina

  • Tess Olivia Bamber
  • Angus Charles Jackson
  • Robert Philip Mansfield
Article

Abstract

Increasing concentrations of atmospheric carbon dioxide are causing oceanic pH to decline worldwide, a phenomenon termed ocean acidification. Mounting experimental evidence indicates that near-future levels of CO2 will affect calcareous invertebrates such as corals, molluscs and gastropods, by reducing their scope for calcification. Despite extensive research into ocean acidification in recent years, the effects on non-calcifying anthozoans, such as sea anemones, remain little explored. In Western Europe, intertidal anemones such as Actinia equina are abundant, lower trophic-level organisms that function as important ecosystem engineers. Changes to behaviours of these simple predators could have implications for intertidal assemblages. This investigation identified the effects of reduced seawater pH on feeding and contest behaviour by A. equina. Video footage was recorded for A. equina feeding at current-day seawater (pH 8.1), and the least (pH 7.9) and most (pH 7.6) severe end-of-century predictions. Footage was also taken of contests over ownership of space between anemones exposed to reduced pH and those that were not. No statistically significant differences were identified in feeding duration or various aspects of contest behaviour including initiating, winning, inflating acrorhagi, inflicting acrorhagial peels and contest duration. Multivariate analyses showed no effect of pH on a combination of these variables. This provides contrast with other studies where anemones with symbiotic algae thrive in areas of natural increased acidity. Thus, novel experiments using intraspecific contests and resource-holding potential may prove an effective approach to understand sub-lethal consequences of ocean acidification for A. equina, other sea anemones and more broadly for marine ecosystems.

Keywords

pH CO2 Cnidaria resource holding potential intraspecific contest 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albright R, Mason B, Miller M, Langdon C (2010) Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata. P Natl Acad Sci USA 107:20400–20404CrossRefGoogle Scholar
  2. Allan BJM, Domenici P, McCormick MI, Watson S-A, Munday PL (2013) Elevated CO2 affects predator-prey interactions through altered performance. PLoS One 8(3). doi:10.1371/journal.pone.0058520Google Scholar
  3. Bala G (2013) Digesting 400 ppm for global mean CO2 concentration. Curr Sci 104:1471–1472Google Scholar
  4. Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC (2012) Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488:70–73CrossRefGoogle Scholar
  5. Bartosz G, Finkelshtein A, Przygodzki T, Bsor T, Nesher N, Sher D, Zlotkin E (2008) A pharmacological solution for a conspecific conflict: ROS-mediated territorial aggression in sea anemones. Toxicon 51:1038–1050CrossRefGoogle Scholar
  6. Bibby R, Cleall-Harding P, Rundle S, Widdicombe S, Spicer J (2007) Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea. Biol Letters 3:699–701CrossRefGoogle Scholar
  7. Bigger CH (1980) Interspecific and intraspecific acrorhagial aggressive behavioru among sea anemones - a recognition of self and not-self. Biol Bull 159:117–134CrossRefGoogle Scholar
  8. Briffa M (2014) What determines the duration of war? Insights from assessment strategies in animal contests. PLoS One 9:e108491. doi:10.1371/journal.pone.0108491CrossRefGoogle Scholar
  9. Briffa M, de la Haye K, Munday PL (2012) High CO2 and marine animal behaviour: potential mechanisms and ecological consequences. Mar Pollut Bull 64:1519–1528CrossRefGoogle Scholar
  10. Calabrese A, Davis HC (1966) The pH tolerance of embryos and larvae of Mercenaria mercenaria and Crassostrea virginica. Biol Bull 131:427–436CrossRefGoogle Scholar
  11. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365CrossRefGoogle Scholar
  12. Chadwick NE, Morrow KM (2011) Competition among sessile organisms on coral reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 347–371CrossRefGoogle Scholar
  13. Chintiroglou C, Koukouras A (1992) The feeding habits of three Mediterranean sea anemone species, Anemonia viridis (Forskål), Actinia equina (Linnaeus) and Cereus pedunculatus (Pennant). Helgolander Meeresun 46:53–68CrossRefGoogle Scholar
  14. Clarke KR, Warwick RM (1994) Changes in marine communities: an approach to statistical analysis and interpretation. Bourne Publishing, Bournemouth, 144 pGoogle Scholar
  15. Connell SD, Russell BD (2010) The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. P Roy Soc B-Biol Sci 277:1409–1415CrossRefGoogle Scholar
  16. Cripps IL, Munday PL, McCormick MI (2011) Ocean acidification affects prey detection by a predatory reef fish. PLoS One 6:e22736. doi:10.1371/journal.pone.0022736CrossRefGoogle Scholar
  17. de la Haye KL, Spicer JI, Widdicombe S, Briffa M (2011) Reduced sea water pH disrupts resource assessment and decision making in the hermit crab Pagurus bernhardus. Anim Behav 82:495–501CrossRefGoogle Scholar
  18. de la Haye KL, Spicer JI, Widdicombe S, Briffa M (2012) Reduced pH sea water disrupts chemo-responsive behaviour in an intertidal crustacean. J Exp Mar Biol Ecol 412:134–140CrossRefGoogle Scholar
  19. Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13:68–75CrossRefGoogle Scholar
  20. Doney SC (2010) The growing human footprint on coastal and open-ocean biogeochemistry. Science 328:1512–1516CrossRefGoogle Scholar
  21. Duarte CM, Hendriks IE, Moore TS, Olsen YS, Steckbauer A, Ramajo L, Carstensen J, Trotter JA, McCulloch M (2013) Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuar Coast 36:221–236CrossRefGoogle Scholar
  22. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432CrossRefGoogle Scholar
  23. Ferrari MCO, Dixson DL, Munday PL, McCormick MI, Meekan MG, Sih A, Chivers DP (2011) Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Glob Change Biol 17:2980–2986CrossRefGoogle Scholar
  24. Foster NL, Briffa M (2014) Familial strife on the seashore: aggression increases with relatedness in the sea anemone Actinia equina. Behav Process 103:243–245CrossRefGoogle Scholar
  25. Gattuso JP, Gao K, Lee K, Rost B, Schulz KG (2010) Approaches and tools to manipulate the carbonate chemistry. In: Riebesell U, Fabry VJ, Hansson L, Gattuso J (eds) Guide to best practices for ocean acidification research and data reporting. European Union, Luxembourg, pp 41–51Google Scholar
  26. Gattuso J, Hansson L (2011) Ocean acidification. Oxford University Press, New York, 352 pGoogle Scholar
  27. Gazeau F, Quiblier C, Jansen JM, Gattuso J-P, Middelburg JJ, Heip CHR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34:L07603. doi:10.1029/2006GL028554CrossRefGoogle Scholar
  28. Guinotte JM, Fabry VJ (2008) Ocean acidification and its potential effects on marine ecosystems. Ann NY Acad Sci 1134:320–342. doi:10.1196/annals.1439.013CrossRefGoogle Scholar
  29. Guppy M, Withers P (1999) Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev Camb Philos 74:1–40CrossRefGoogle Scholar
  30. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia M-C (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99CrossRefGoogle Scholar
  31. Hawkins DG (2004) No exit: thinking about leakage from geologic carbon storage sites. Energy 29:1571–1578CrossRefGoogle Scholar
  32. Holloway S (2005) Underground sequestration of carbon dioxide - a viable greenhouse gas mitigation option. Energy 30:2318–2333CrossRefGoogle Scholar
  33. Hsu YY, Wolf LL (1999) The winner and loser effect: integrating multiple experiences. Anim Behav 57:903–910CrossRefGoogle Scholar
  34. IPCC (2007) Climate Change 2007: the physical science basis. Working Group 1 Report, Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, 996 pGoogle Scholar
  35. Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434CrossRefGoogle Scholar
  36. Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol-Prog Ser 373:275–284CrossRefGoogle Scholar
  37. Martin P, Bateson P (2007) Measuring behaviour: an introductory guide, 3rd ed. Cambridge University Press, New York, 222 pCrossRefGoogle Scholar
  38. Menge BA, Berlow EL, Blanchette CA, Navarrete SA, Yamada SB (1994) The keystone species concept - variation in interaction strength in a rocky intertidal habitat. Ecol Monogr 64:249–286CrossRefGoogle Scholar
  39. Meron D, Buia M-C, Fine M, Banin E (2013) Changes in microbial communities associated with the sea anemone Anemonia viridis in a natural pH gradient. Microb Ecol 65:269–276CrossRefGoogle Scholar
  40. Milazzo M, Rodolfo-Metalpa R, Chan VBS, Fine M, Alessi C, Thiyagarajan V, Hall-Spencer JM, Chemello R (2014) Ocean acidification impairs vermetid reef recruitment. Sci Rep 4:4189. doi:10.1038/srep04189CrossRefGoogle Scholar
  41. Monteiro FA, SoleCava AM, Thorpe JP (1997) Extensive genetic divergence between populations of the common intertidal sea anemone Actinia equina from Britain, the Mediterranean and the Cape Verde Islands. Mar Biol 129:425–433CrossRefGoogle Scholar
  42. Morabito R, Marino A, Lauf PK, Adragna NC, La Spada G (2013) Sea water acidification affects osmotic swelling, regulatory volume decrease and discharge in nematocytes of the jellyfish Pelagia noctiluca. Cell Physiol Biochem 32:77–85CrossRefGoogle Scholar
  43. Ormond RFG, Caldwell S (1982) The effect of oil pollution on the reproduction and feeding behaviour of the sea anemone Actinia equina. Mar Pollut Bull 13:118–122CrossRefGoogle Scholar
  44. Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692CrossRefGoogle Scholar
  45. Raven J, Caldeira K, Elderield H, Hoegh-Guldberg O, Liss P, Riebesell U, Shepherd J, Turley C, Watson A (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society Policy Document, Clyvedon Press, CardiffGoogle Scholar
  46. Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D, Feely RA, Gulev S, Johnson GC, Josey SA, Kostianoy A, Mauritzen C, Roemmich D, Talley LD, Wang F (2013) Observations: ocean pages. In: Stocker TD, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013 - the physical science basis. IPCC, Cambridge, pp 255–316Google Scholar
  47. Ross PM, Parker L, O’Connor WA, Bailey EA (2011) The impact of ocean acidification on reproduction, early development and settlement of marine organisms. Water 3:1005–1030CrossRefGoogle Scholar
  48. Rudin FS, Briffa M (2011) The logical polyp: assessments and decisions during contests in the beadlet anemone Actinia equina. Behav Ecol 22:1278–1285CrossRefGoogle Scholar
  49. Rudin FS, Briffa M (2012) Is boldness a resource-holding potential trait? Fighting prowess and changes in startle response in the sea anemone, Actinia equina. P Roy Soc B-Biol Sci 279:1904–1910CrossRefGoogle Scholar
  50. Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293CrossRefGoogle Scholar
  51. Simpson SD, Munday PL, Wittenrich ML, Manassa R, Dixson DL, Gagliano M, Yan HY (2011) Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol Letters 7:917–920CrossRefGoogle Scholar
  52. Stella JS, Pratchett MS, Hutchings PA, Jones GP (2011) Coralassociated invertebrates: diversity, ecological importance and vulnerability to disturbance. Oceanog Mar Biol 49:43–104Google Scholar
  53. Suggett DJ, Hall-Spencer JM, Rodolfo-Metalpa R, Boatman TG, Payton R, Pettay DT, Johnson VR, Warner ME, Lawson T (2012) Sea anemones may thrive in a high CO2 world. Glob Change Biol 18:3015–3025CrossRefGoogle Scholar
  54. Towanda T, Thuesen EV (2012) Prolonged exposure to elevated CO2 promotes growth of the algal symbiont Symbiodinium muscatinei in the intertidal sea anemone Anthopleura elegantissima. Biol Open 1:615–621CrossRefGoogle Scholar
  55. Tuomainen U, Candolin U (2011) Behavioural responses to human-induced environmental change. Biol Rev 86:640–657CrossRefGoogle Scholar
  56. Watson S-A, Lefevre S, McCormick MI, Domenici P, Nilsson GE, Munday PL (2014) Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels. P Roy Soc BBiol Sci 281. doi:10.1098/rspb.2013.2377Google Scholar
  57. Widdicombe S, Dashfield SL, McNeill CL, Needham HR, Beesley A, McEvoy A, Oxnevad S, Clarke KR, Berge JA (2009) Effects of CO2 induced seawater acidification on infaunal diversity and sediment nutrient fluxes. Mar Ecol-Prog Ser 379:59–75CrossRefGoogle Scholar
  58. Zeebe RE, Ridgwell A (2011) Past changes in ocean carbonate chemistry. In: Gattuso J, Hansson L (eds) Ocean acidification. Oxford University Press, New York, pp 21–40Google Scholar
  59. Zeebe RE, Zachos JC, Caldeira K, Tyrrell T (2008) Oceans - carbon emissions and acidification. Science 321:51–52CrossRefGoogle Scholar

Copyright information

© Korea Institute of Ocean Science & Technology (KIOST) and the Korean Society of Oceanography (KSO) and Springer Nature B.V. 2018

Authors and Affiliations

  • Tess Olivia Bamber
    • 1
  • Angus Charles Jackson
    • 1
  • Robert Philip Mansfield
    • 2
  1. 1.Centre for Applied ZoologyCornwall College NewquayNewquayUK
  2. 2.ProagricaSuttonUK

Personalised recommendations