Characterization and potential mechanisms of resistance of cucumber genotypes to Bemisia tabaci (Hemiptera: Aleyrodidae)

Abstract

Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae) is a major pest of several agricultural crops, being vector of an extreme number of viruses. The broad variety of host plants, high adaptability and evolution of resistance to insecticides evidence the difficult in the management of B. tabaci in the agriculture system. Host plant resistance is a valuable and sustainable method of insect management. To date, few studies have characterized the resistance of cucumber (Cucumis sativus L.) genotypes to B. tabaci, although this plant is one of the most preferred host of this hemipteran. The objective of this study was to assess the resistance of 60 cucumber genotypes against B. tabaci in greenhouse and laboratory conditions and to characterize the mechanisms of resistance involved based on morphological and physical plant parameters. Initially, 12 genotypes were selected in a screening bioassay. In general, ‘IAC-1214’ expressed high levels of antixenosis to the insect, causing low attractiveness to adults and non-preference for oviposition and colonization. 'Wellington' prolonged the development of the insect and provoked low levels of adult emergence, expressing levels of antibiosis. Antibiosis and/or antixenosis were detected in ‘IAC-1201’, ‘Campeiro’, ‘Japonês’, and ‘IAC-1311’, while antixenosis was detected in ‘Kyria’ and ‘IAC-1175’. The density of the trichomes and the color of the leaves are described and discussed here. The selected genotypes present potential application in integrated programs that focus on reducing populations of B. tabaci in the agricultural system and in breeding programs aiming to explore resistant genotypes against the insect.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abd-Rabou, S., & Simmons, A. M. (2010). Survey of reproductive host plants of Bemisia tabaci (Hemiptera: Aleyrodidae) in Egypt, including new host records. Entomological News, 121(5), 456–465.

    Google Scholar 

  2. Ahmad, M., & Akhtar, K. P. (2018). Susceptibility of cotton whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) to diverse pesticides in Pakistan. Journal of Economic Entomology, 111(4), 1834–1841.

    CAS  PubMed  Google Scholar 

  3. Ahmad, M., & Khan, R. A. (2017). Field-evolved resistance of Bemisia tabaci (Hemiptera: Aleyrodidae) to carbodiamide and neonicotinois in Pakistan. Journal of Economic Entomology, 110(3), 1235–1242.

    CAS  PubMed  Google Scholar 

  4. Alves, A. C., Lourenção, A. L., & Melo, A. M. T. (2005). Resistance of squash genotypes to Bemisia tabaci (Genn.) biotype B (Hemiptera: Aleyrodidae). Neotropical Entomology, 34(6), 973–979.

    Google Scholar 

  5. Baldin, E. L. L., & Beneduzzi, R. A. (2010). Characterization of antibiosis and antixenosis to the whitefly silverleaf Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) in several squash varieties. Journal of Pest Science, 83(3), 223–229.

    Google Scholar 

  6. Baldin, E. L. L., Cruz, P. L., Morando, R., Silva, I. F., Bentivenha, J. P. F., Tozin, L. R. S., & Rodrigues, T. M. (2017). Characterization of antixenosis in soybean genotypes to Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B. Journal of Economic Entomology, 110(4), 1869–1876.

    CAS  PubMed  Google Scholar 

  7. Ballina-Gomez, H., Latournerie-Moreno, L., Ruiz-Sánchez, E., Pérez-Gutiérrez, A., & Rosado-Lugo, G. (2013). Morphological characterization of Capsicum annuum L. accessions from southern Mexico and their response to the Bemisia tabaci-Begomovirus complex. Chilean Journal of Agricultural Research, 73(4), 329–338.

    Google Scholar 

  8. Bentivenha, J. P. F., Canassa, V. F., Baldin, E. L. L., Borguini, M. G., Lima, G. P. P., & Lourenção, A. L. (2017). Role of the rutin and genistein flavonoids in soybean resistance to Piezodorus guildinii (Hemiptera: Pentatomidae). Arthropod-Plant Interaction, 12(2), 311–320.

    Google Scholar 

  9. Berlinger, M. J. (1986). Host plant resistance to Bemisia tabaci. Agriculture, Ecosystems & Environmental, 17(1–2), 69–82.

    Google Scholar 

  10. Blua, M. J., Yoshida, H. A., & Toscano, N. C. (1995). Oviposition preference of two Bemisia species (Homoptera: Aleyrodidae). Environmental Entomology, 24(1), 88–93.

    Google Scholar 

  11. Boykin, L. M. (2014). Bemisia tabaci nomenclature: Lessons learned. Pest Management Science, 70(10), 1454–1459.

    CAS  PubMed  Google Scholar 

  12. Brown, J. K. (1994). Current status of Bemisia tabaci as a plant pest and virus vector in agroecosystems worldwide. Plant Protection Bulletin, 42(1), 3–32.

    Google Scholar 

  13. Brown, J. K. (2000). Molecular markers for the identification and global tracking of whitefly vector-begomovirus complexes. Virus Research, 71(1–2), 233–260.

    CAS  PubMed  Google Scholar 

  14. Brown, J. K. (2011). The molecular epidemiology of Begomoviruses. In J. A. Khan & J. Dykstra (Eds.), Trends in plant virology (pp. 279–316). New York: The Haworth Press.

    Google Scholar 

  15. Butter, N. S., & Vir, B. K. (1989). Morphological basis of resistance in cotton to the whitefly Bemisia tabaci. Phytoparasitica, 17, 251–261.

    Google Scholar 

  16. Byrne, D. N., & Bellows, T. S., Jr. (1991). Whitefly biology. Annual Review of Entomology, 36, 431–457.

    Google Scholar 

  17. Cahill, M., Gorman, K., Day, S., Denholm, I., Elbert, A., & Nauen, R. (1995). Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae). Bulletin of Entomological Research, 86(4), 343–349.

    Google Scholar 

  18. Chu, C. C., Henneberry, T. J., & Cohen, A. C. (1995). Bemisia argentifolii (Homoptera: Aleyrodidae) on cotton: Host preference and factors affecting oviposition and feeding site preference. Environmental Entomology, 24(2), 354–360.

    Google Scholar 

  19. Chu, D., Zhang, Y., Brown, J. K., Cong, B., Xu, B., Wu, Q., & Zhu, G. (2006). The introduction of the exotic Q biotype of Bemisia tabaci from the Mediterranean region into China on ornamental crops. Florida Entomologist, 89(2), 168–174.

    Google Scholar 

  20. Coelho, S. A. M. P., Lourenção, A. L., Melo, A. M. T., & Schammass, E. A. (2009). Resistance of melon to Bemisia tabaci biotype B. Bragantia, 68(4), 1025–1035.

    Google Scholar 

  21. Coudriet, D. L., Prabhaker, N., Kishaba, A. N., & Meyerdirk, D. E. (1985). Variation in developmental rate on different hosts and overwintering of the sweetpotato whitefly, Bemisia tabaci (Homoptera: Aleyrodidae). Environmental Entomology, 14(4), 516–519.

    Google Scholar 

  22. De Barro, P. J., Liu, S.-S., Boykin, L. M., & Dinsdale, A. B. (2011). Bemisia tabaci: A statement of species status. Annual Review of Entomology, 56, 1–19.

    PubMed  Google Scholar 

  23. De Barro, P. J., Scott, K. D., Graham, G. C., Lange, C. L., & Schutze, M. K. (2003). Isolation and characterization of microsatellite loci in Bemisia tabaci. Molecular Ecology Notes, 3(1), 40–43.

    Google Scholar 

  24. Elbert, A., & Nauen, R. (2000). Resistance of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids. Pest Management Science, 56(1), 60–64.

    CAS  Google Scholar 

  25. Fancelli, M., & Vendramim, J. D. (2002). Development of Bemisia tabaci (Gennadius, 1889) biotype B on Lycopersicon spp. genotypes. Scientia Agricola, 59(4), 665–669.

    Google Scholar 

  26. Fancelli, M., Vendramim, J. D., Frighetto, R. T. S., & Lourenção, A. L. (2005). Glandular exudate of tomato genotypes and development of Bemisia tabaci (Genn.) (Sternorryncha: Aleyrodidae) biotype B. Neotropical Entomology, 34(4), 659–665.

    Google Scholar 

  27. Hoffmann-Campo, C. B., Neto, J. A. R., Oliveira, M. C. N., & Oliveira, L. J. (2006). Detrimental effect of rutin on Anticarsia gemmatalis. Pesquisa Agropecuária Brasileira, 41(10), 1453–1459.

    Google Scholar 

  28. Jindal, V., & Dhaliwal, G. S. (2011). Mechanisms of resistance in cotton to whitefly (Bemisia tabaci): Antixenosis. Phytoparasitica, 39(2), 129–136.

    Google Scholar 

  29. Jiu, M., Hu, J., Wang, L. J., Dong, J. F., Song, Y. Q., & Sun, H. Z. (2017). Cryptic species identification and composition of Bemisia tabaci (Hemiptera: Aleyrodidae) complex in Henan province, China. Journal of Insect Science, 17(3), 1–7.

    Google Scholar 

  30. Kawazu, Y., Shimomura, K., Maeda, S., Yamato, Y., Ueda, S., Okuda, S., Okuda, M., & Sugiyama, M. (2018). QTL mapping for resistance to cucurbit chlorotic yellows virus in melon (Cucumis melo L.). Euphytica, 214, 239.

    Google Scholar 

  31. Khatun, M. F., Hwang, H., Shim, J., Kil, E., Lee, S., & Lee, K. (2020). Identification of begomoviruses from different cryptic species of Bemisia tabaci in Bangladesh. Microbial Pathogenesis, 142, 104069.

    CAS  PubMed  Google Scholar 

  32. Kishaba, A. N., Castle, S., McCreight, J. D., & Desjardins, P. R. (1992). Resistance of white-flowered gourd to sweetpotato whitefly. Hort Science, 27(11), 1217–1221.

    Google Scholar 

  33. Li, Z. H., Lammes, F., van Lenteren, J. C., Huisman, P. W. T., van Vianen, A., & de Ponti, O. M. B. (1987). The parasite-host relationship between Encarsia formosa Gahan (Hymenoptera, Aphelinidae) and Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). XXV. Influence of leaf structure on the searching activity of Encarsia formosa. Journal of Applied Entomology, 104(1–5), 297–304.

    Google Scholar 

  34. Lima, A. C. S., & Lara, F. M. (2001). Mosca-branca (Bemisia tabaci): morfologia, bioecologia e controle. Jaboticabal: Funep.

    Google Scholar 

  35. Liu, S., Colvin, J., & De Barro, P. J. (2012). Species concepts as applied to the whitefly Bemisia tabaci systematics: How many species are there? Journal of Integrative Agriculture, 11(2), 176–186.

    Google Scholar 

  36. McAuslane, H. J. (1996). Influence of leaf pubescence on ovipositional preference of Bemisia argentifolli (Homoptera: Aleyrodidae) on soybean. Environmental Entomology, 25(4), 834–841.

    Google Scholar 

  37. McCreight, J. D., & Kishaba, S. N. (1991). Reaction of cucurbit species to squash leaf curl virus and sweetpotato whitefly. Journal of the American Society of Horticulture Science, 116(1), 137–141.

    Google Scholar 

  38. Minolta, K. (1998). Precise color communication: Color control from perception to instrumentation. Osaka: Konica Minolta Sensing Inc..

    Google Scholar 

  39. Miyazaki, J., Stiller, W. N., & Wilson, L. J. (2013). Identification of host resistance to silverleaf whitefly in cotton: Implications for breeding. Field Crops Research, 154, 145–152.

    Google Scholar 

  40. Muniyappa, V., Maruthi, M. N., Babitha, C. R., Colvin, J., Briddon, R. W., & Rangaswamy, K. T. (2003). Characterization of pumpkin yellow vein mosaic virus from India. Annals of Applied Biology, 142(3), 323–331.

    Google Scholar 

  41. Musa, P. D., & Ren, S. X. (2005). Development and reproduction of Bemisia tabaci (Homoptera: Aleyrodidae) on three bean species. Insect Sci., 12(1), 25–30.

    Google Scholar 

  42. Navas-Castillo, J., Fiallo-Olivé, E., & Sánchez-Campos, E. (2011). Emerging virus diseases transmitted by whiteflies. Annual Review of Phytopathology, 49, 219–248.

    CAS  PubMed  Google Scholar 

  43. Naveen, N. C., Chaubey, R., Kumar, D., Rebijith, K. B., Rajagopal, R., Subrahmanyam, B., & Subramanian, S. (2017). Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asis-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Scientific Reports, 7, 40634.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Oriani, M. A. G., & Vendramim, J. D. (2010). Influence of trichomes on attractiveness and ovipositional preference of Bemisia tabaci (Genn.) B biotype (Hemiptera: Aleyrodidae) on tomato genotypes. Neotropical Entomology, 39(6), 1002–1007.

    PubMed  Google Scholar 

  45. Oriani, M. A. G., Vendramim, J. S., & Brunherotto, R. (2005). Attractiveness and oviposition nonpreference of Bemisia tabaci (Genn.) biotype B (Hemiptera: Aleyrodidae) for bean genotypes. Neotropical Entomology, 34(2), 105–111.

    Google Scholar 

  46. Polston, J. E., De Barro, P., & Boykin, L. M. (2014). Transmission specificities of plant viruses with the newly identified species of the Bemisia tabaci species complex. Pest Management Science, 70(10), 1547–1552.

    CAS  PubMed  Google Scholar 

  47. Prado, J. C., Penaflor, M. F. G. V., Cia, E., Vieira, S. S., Silva, K. I., Carlini-Garcia, L. A., & Lourenção, A. L. (2016). Resistance of cotton genotypes with different leaf colour and trichome density to Bemisia tabaci biotype B. Journal of Applied Entomology, 140(6), 405–413.

    Google Scholar 

  48. Quintela, E. D., Abreu, A. G., Lima, J. F., Mascarin, G. M., Santos, J. B., & Brown, J. K. (2016). Reproduction of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) B biotype in maize fields (Zea mays L.) in Brazil. Pest Management Science, 72(11), 2181–2218.

    CAS  PubMed  Google Scholar 

  49. SAS Institute. (2001). Statistical analysis system, User’s guide: Statistics, version 8.2. North Carolina: SAS Institute.

    Google Scholar 

  50. Schuster, D. J., Kring, J. B., & Price, J. F. (1991). Association of the sweet potato whitefly with a silverleaf disorder of squash. Hort Science, 26(2), 155–156.

    Google Scholar 

  51. da Silva, P. H. S., Castro, M. J. P., & Freire Filho, F. R. (2008). Resistência do tipo não-preferência para alimentação e oviposição de mosca-branca em genótipos de feijão-caupi. Teresina: Embrapa Meio-Norte.

    Google Scholar 

  52. Smith, C. M. (2005). Plant resistance to arthropods: Molecular and conventional approaches. Netherlands: Springer.

    Google Scholar 

  53. Taha, O., Farouk, I., Abdallah, A., & Abdallah, N. A. (2016). Use of posttranscription gene silencing in squash to induce resistance against the Egyptian isolate of the Squash Leaf Curl Virus. International Journal of Genomic, 2016, 6053147.

    Google Scholar 

  54. Valle, G. E., & Lourenção, A. L. (2002). Resistência de genótipos de soja a Bemisia tabaci (Genn.) biótipo B (Hemiptera: Aleyrodidae). Neotropical Entomology, 31(2), 285–295.

    Google Scholar 

  55. Van Lenteren, J., & Noldus, L. P. J. J. (1990). Whitefly-plant relationships: Behavioral and ecological aspects. In D. Gerling (Ed.), Whiteflies: Their bionomics, pest status and management (pp. 47–89). Andover: Intercept.

    Google Scholar 

  56. Villas Bôas, G. L., França, F. H., & Macedo, N. (2002). Biotic potential of Bemisia argentifolii to different host plants. Horticultura Brasileira, 20(1), 71–79.

    Google Scholar 

Download references

Acknowledgments

We thank the National Council for Scientific and Technological Development (CNPq), for the Productivity Scholarship in Research granted to André Luiz Lourenção and Edson Luiz Lopes Baldin.

Author information

Affiliations

Authors

Corresponding author

Correspondence to José P. F. Bentivenha.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Novaes, N.S., Lourenção, A.L., Bentivenha, J.P.F. et al. Characterization and potential mechanisms of resistance of cucumber genotypes to Bemisia tabaci (Hemiptera: Aleyrodidae). Phytoparasitica 48, 643–657 (2020). https://doi.org/10.1007/s12600-020-00826-3

Download citation

Keywords

  • Antibiosis
  • Antixenosis
  • Trichomes
  • Leaf color parameters
  • Sweet potato whitefly