Crop genotype and stem cutting portion affect infestation pressure of the cassava root scale Stictococcus vayssierei Richard (Hemiptera: Stictococcidea) in a rainforest in Cameroon


African root and tuber scale (ARTS) Stictococcus vayssierei Richard is a serious constraint to the production of cassava (Manihot esculenta Crantz) in Central Africa, and the food and income security for smallholder farmers. Therefore, to improve the production of cassava it is urgent to determine the appropriate cultural practices that lower ARTS infestation pressure. This study tests the single and combined effects of stem cutting portion and crop variety on ARTS infestation levels’. A split-plot design with four cassava varieties (TMS 96/0023, Excel, Miboutou and Douma) as the main plots and three stem cuttings portions of these varieties (lower, middle and upper portions of the mother plant) as sub-plots was used. The results showed that at 12 months after planting (MAP), lower portions of the local variety Douma showed the highest fresh shoots (2.95 ± 0.13 kg) than the upper portions (2.08 ± 0.09 kg) of the Excel variety. The portions at lower of the Excel variety were the most infested (118-158.38 and 126.75 ARTS) at 3, 6 and 9 MAP respectively. The yield of local variety Douma was higher (20.00-20.11 t ha− 1) in plots planted with portions at middle and lower, followed by yields of TMS 96/0023 variety (19.00 t ha− 1) in plots planted with the lower portions. Overall, irrespective of the cassava variety, the lower portion 16.49 t ha− 1 resulted in higher yield than those the upper portion 10.81 t ha− 1.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Acquaah, G. (2007). Principles of plant genetics and breeding. Blackwell Publishing Ltd.

  2. Agbarevo, M. N. (2003). Practical Guide to crop Production. Ogoja: Sogar Printers (Nig). Publishers.

    Google Scholar 

  3. Ambang, Z., Akoa, A., Ndongo, B., Nantia, V., Nyobe, L., & Ongono, Y. S. B. (2007). Tolerance of some cassava cultivars (Manihot esculenta Crantz) and wild species (Manihot glaziovii) to African viral mosaic disease and cassava leaf spot. Tropicultura, 25, 140–145.

    Google Scholar 

  4. Ambe, J. T., Ntonifor, N. N., Awah, E. T., & Yanine, J. S. (1999). The effect of planting dates on the incidence and population dynamics of the cassava root scale, Stictococcus vayssierei, in Cameroon’. International Journal of Pest Management, 45, 125–130.

    Article  Google Scholar 

  5. Anikwe, M. A. N., & Ikenganyia, E. E. (2018). Ecophysiology and Production Principles of Cassava (Manihot species) in Southeastern Nigeria (pp. 105–121). London: Intechopen.

  6. Benesi, I. R. M., Labuschagne, M. T., & Mahungu, N. M. (2004). Genotype x Environment interaction effects on native cassava starch quality and potential for starch use in the commercial sector. African Journal of Crop Science, 12, 205–216.

    Article  Google Scholar 

  7. Ben-Dov, Y. (1997). Diagnosis. In: Ben-Dov, Y., Hodgson C. J. (Eds) Soft scale insects: Their biology, natural enemies and control (p. 3–4). Amsterdam: Elsevier Science B.V.

  8. Calatayud, P. A. (2011). Plant-insect interactions. Qualification to Conduct Research(HDR) (86 P). Orsay: University Paris-Sud.

  9. CNRCIP. (1989). Annual report for 1989 of the Cameroon National Root Crop Improvement Program (CNRCIP). Annual Report. Cameroon: IRAD Njombe.

  10. Eze, S. C., & Ugwuoke, K. I. (2010). Evaluation of different stem portions of cassava (Manihot esculentus) in the management of its establishment and yield. Research Journal of Agriculture and BiologicalSciences, 2, 181–185.

    Google Scholar 

  11. FAO. (2014). Cassava pest management guide for use by cooperatives (pp. 11–15).

  12. FAO. (2018). FAOSTAT data base results. Food and Alimentation Organization (FAO). Rome: Faostat.

  13. Hanna, R., Tindo, M., Wijnans, L., Goergen, G., Tata Hangy, K., Lema, K., Toko, M., Ngeve, J. M., Dixon, A., & Gockowski, J. (2004). The African root and tuber scale problem in Central Africa: the nature of the problem and the search for control options. In Book of Abstracts of the 9th Triennial Symposium of the International Society for Tropical Root Crops-Africa Branch, 31 October–5 November 2004, Mombasa, Kenya (57 p).

  14. Huis, R., Morreel, K., Fliniaux, O., Lucau-Danila, A., Fénart, S., Grec, S., et al. (2012). Natural hypolignification is associated with extensive oligolignol accumulation in flax stems. Plant Physiology,158, 1893–1915.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. International Institute of Tropical Agriculture. (2000). How to start a cassava field, a guide to IPM practice for extension workers.IITA (24 p). Nigeria: Ibadan.

    Google Scholar 

  16. Kamau, J., Melis, R., Laing, M., Shanahan, D. J., P., & Ngugi, C. K. E. (2011). Farmers‘ participatory selection for early bulking Cassava genotypes in semi-arid Eastern Kenya. Journal of Plant Breeding and crop sciences, 3, 44–52.

  17. Karthikeyan, C., Patil, B. L., Borah, B. K., Resmi, T. R., Turco, S., Pooggin, M. M., et al. (2016). Emergence of a latent Indian cassava mosaic virus from cassava which recovered from infection by a non-persistent Sri Lankan cassava mosaic virus. Viruses,8, 1–15.

    CAS  Article  Google Scholar 

  18. Lema, K. M., Tata-Hangy, K., & Bidiaka, M. (2004). Management of African root and tuber scale using improved cassava genotypes and mineral fertilisers. African Crop Science Journal, 12, 217–221.

  19. Moudingo, E. J. (2007). Situation of the forests in Cameroon (24 p.). Cameroon Wild life Society Conservation.

  20. Mukendi, T. D., Tshimbombo, J. C., Muyayabantu, M. G., Tshiamala, N. T., Kamukenji, N. M. A., Beya, M. S., & Mukendi, K. R. (2018). Evaluation of the optimum age of maturation of the various local and improved varieties of cassava (Manihot esculenta Crantz) cultivated at Ngandajika in the Democratic Republic of Congo. Journal of Applied Biosciences, 121, 12121–12128.

    Article  Google Scholar 

  21. Mutsaers, H., Mbouémboué, P., & Mouzong, B. (1981). Traditional food crop growing in the Yaoundé area(Cameroon) (pp. 87–273). Part I. Synopsis of the system Agro-Ecosystems 6.

  22. Nassar, N. M. A., & Ortiz, R. (2007). Cassava improvement: challenges and impacts. Cambridge Journal of Agricultural Science, 145, 163–171.

    Article  Google Scholar 

  23. Ndengo, N. E., Ki-Munseki, A. L., Hanna, R., Mahungu, N. M., & Ngbolua, K. (2016a). Influence of the population density of the African root and tuber scale insect (Stictococcus vayssierei Richard) on the yields of Cassava (Manihot esculenta CRANTZ) improved in different Agro-ecological zones of Beni (North Kivu, DR Congo). International Journal of Innovation and Applied Studies, 16, 247–259.

    Google Scholar 

  24. Ndengo, N. E., Ki-Munseki, A. L., Hanna, R., Mahungu, N. M., & Ngbolua, K. (2016b). Screening cassava (Manihot esculenta CRANTZ) genotypes for resistance to African root and tuber scale (Stictococcus vayssierei Richard) in different Agro-ecological zones of Beni (North Kivu, DR Congo). International Journal of Innovation and Applied Studies, 16, 247–259.

    Google Scholar 

  25. Ndongo, B., Ngatsi, Z. P., Nguimbous, L. B., Ambang, Z., Mounpoubeyi, M. N., & Kutnjem, D. (2017). Effect of aqueous extracts of Thevetia peruviana and Mucana Puriens on cassava root scale (Stictococcus vayssierei) in field. American Journal of Innovative Research and Applied Sciences, 5, 26–34.

    Google Scholar 

  26. Ngeve, J. M. (2003). The cassava root mealybug (Stictococcus vayssierei Richard) (Homoptera: Stictococcidae): a threat to cassava production and utilization in Cameroon. International Journal of Pest Management, 49, 327–333.

    Article  Google Scholar 

  27. Noerwijati, K., Nasrullah, T., & Prajitno, D. (2014). Fresh tuber yield stability analysis of fifteen cassava genotypes across five environments in East Java (Indonesia) using GGE biplot. Energy Procedia, 47, 156–165.

    Article  Google Scholar 

  28. Pedersen, J. F., Vogel, K. P., & Funnell, D. L. (2005). Impact of Reduced Lignin on Plant Fitness. Crop Science, 45, 812–819.

    CAS  Article  Google Scholar 

  29. Pynaert, L. (1951). The manioc. Technical Collection of the Ministry of Cooperation of the Kingdom of Belgium (166 p). Bruxelles: 2è édition.

    Google Scholar 

  30. Poubom, C. F. N., Awah, E. T., Tchuanyo, M., & Tengoua, F. (2005). Farmer’s perceptions of cassava pests and indigenous control methods in Cameroon. International Journal of Pest Management, 51, 157–164.

    Article  Google Scholar 

  31. Raffaillac, J. P. (1992). Rooting of cuttings of cassava (Manihof esculenta Crantz) during the first weeks of growth of the plant. Tropical Agronomy, 46, 273–281.

    Google Scholar 

  32. Raffaillac, J. P., & Segond, G. (2004). Cassava. In Charrier A., Jacquot, M., Hamon, S., & Nicholas, D. (Eds.) The improvement of tropical plants (pp. 429–455). Montpellier: CIRAD .

  33. Rajiv, K. S., George, H., Upendra, P., & Chandrajeet, K. (2016). Embarking on second green revolution by vermiculture for production of chemical free organic foods, protection of crops and farm soils and elimination of deadly agrochemicals from earth: Meeting the challenges of food security of 21st century by earthworms-sir charles darwin’s ‘friends of farmers.’ Agricultural Research Updates (pp. 1–49). New York: Nova Science Publishers, Inc.

  34. Richard, C. (1971). Contribution to the morphological and biological study of Stictococcinae (Homoptera: Coccoidea). . Annals of the Entomological Society of France,7, 571–609. ((n.s.)).

    Google Scholar 

  35. Sehgal, D. K. (2012). Split plot and Strip plot designs (pp. 377–388). New Delhi: IASRI, Library Avenue.

    Google Scholar 

  36. Sharma, H. C. (1993). Host-plant resistance to insects in sorghum and its role in integrated pest management. Crop Protection,12, 11–34.

    Article  Google Scholar 

  37. Tata-Hangy, K., Hanna, R., Toko, M., Lema, K. M., & Solo, M. (2006). Changes in population abundance of the African root and tuber scale Stictococcus vayssierei Richard (Homoptera; Stictococcidae) on cassava in the bas-fleuve district in the Democratic Republic of Congo. In Mahungu N. M., & Manyong V. M. (Eds.) Advances in Root and Tuber Crops Technologies for Sustainable Food Security, Improved Nutrition, Wealth and Environmental Conservation in Africa. Proceedings of 9th ISTRC-AB Symposium Mombassa, Kenya (pp. 574–582).

  38. Tindo, M., Doumtsop, A., Goergen, G., & Hanna, R. (2006). Morphological description and illustration of female developmental stages of Stictococcus vayssierei (Homoptera: Stictococcidae). International Journal of Tropical Insect Science, 26, 126–133.

    Article  Google Scholar 

  39. Tindo, M., Hanna, R., Goergen, G., Zapfack, L., Tata-Hangy, K., & Attey, A. (2009). Host plants of Stictococcus vayssierei Richard (Stictococcidae) in non-crop vegetation in the Congo Basin and implications for developing scale management options. International Journal of Pest Management, 55, 339–345.

    Article  Google Scholar 

  40. Udealor, A., & Asiegbu, J. E. (2006).. Effects of cassava genotype and vegetable cowpea populations on the component crop yield and system productivity on cassava/vegetable cowpea intercropping systems. The Nigerian Agricultural journal, 37, 74–80.

    Article  Google Scholar 

  41. Williams, D. J., Matile-Ferrero, D., & Miller, D. R. (2010). A study of some species of the genus Stictococcus Cockerell (Hemiptera: Sternorryncha: Coccoidea: Stictococcidae), and a discussion on Stictococcus vayssierei Richard a species injurious cassava in Equatorial Africa with a description of a new species from Nigeria. Zootaxa, 2527, 1–27.

    Article  Google Scholar 

Download references


The authors are sincerely thankful to the International Institute of Tropical Agriculture and the Institute of Agricultural Research for Development for planting material provision. The authors also wish to thank Dr. Pierre EKE for his valuables comments and suggestions on this manuscript.

Author information



Corresponding author

Correspondence to Patrice Zemko Ngatsi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Table 5 Effect of cassava variety on fresh shoot weight (kg)
Table 6 Effect of cuttings portions of stem on fresh shoot weight (kg)
Table 7 Effect of cassava variety on stem collar diameter (cm)
Table 8 Effect of cuttings portions of stem on stem collar diameter (cm)
Table 9 Effect of cassava variety on number of cassava root scale
Table 10 Effect of cuttings portions of stem on number of cassava root scale
Table 11 Effect of cassava variety on yield (t ha-1)
Table 12 Effect of cuttings portions of stem on yield (t ha-1)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ngatsi, P.Z., Ndongo, B., Kutnjem, D. et al. Crop genotype and stem cutting portion affect infestation pressure of the cassava root scale Stictococcus vayssierei Richard (Hemiptera: Stictococcidea) in a rainforest in Cameroon. Phytoparasitica (2020).

Download citation


  • Manihot esculenta
  • Scale insect
  • Cuttings portions
  • Varieties
  • Yield