Advertisement

Phytoparasitica

, Volume 46, Issue 2, pp 153–167 | Cite as

Demography and population projection of Myzus persicae (Sulz.) (Hemiptera: Aphididae) on five pepper (Capsicum annuum L.) cultivars

  • Mehmet Salih Özgökçe
  • Hsin Chi
  • Remzi Atlıhan
  • Hilmi Kara
Article

Abstract

The green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), is a major pest of pepper. In this study, we collected data on the development, survival, fecundity, and proportion of apterous and alate forms of green peach aphid reared on five commercial pepper cultivars (Amiral, Erciyes, Mert, Mertcan, and Naz) at 25 ± 1°C, 60 ± 5% RH, and a photoperiod of 16:8 (L:D) h. We analyzed the life history raw data by using the age-stage, two-sex life table. The shortest development time (6.66 days) and highest fecundity (62.68 individuals) occurred on the Erciyes cultivar. The highest intrinsic rate of increase (r = 0.332 d−1), finite rate of increase (λ = 1.394 d−1), net reproductive rate (R0 = 62.7 offspring) and shortest mean generation time (T = 12.45 d) also occurred on the Erciyes cultivar; while the lower fitness occurred on the Amiral, Mertcan and Naz cultivars. Our results compared differences in the population growth rate of M. persicae on different pepper cultivars. This information will be useful to individuals working in pest management programs particularly those involving M. persicae.

Keywords

Myzus persicae Capsicum annuum Cultivars Host plant preference Age-stage two-sex life table Alate and apterous forms 

Notes

Acknowledgements

We thank Cecil L. Smith (Arthropod Collection, Georgia Museum of Natural History, University of Georgia, Athens, Georgia 30602 U.S.A.) for generous help in correcting the English writing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Akca, I., Ayvaz, T., Yazıcı, E., Smith, C. L., & Chi, H. (2015). Demography and population projection of Aphis fabae (Hemiptera: Aphididae): With additional comments on life table research criteria. Journal of Economic Entomology, 108, 1466–1478.CrossRefPubMedGoogle Scholar
  2. Bernays, E. A. (1998). The value of being a resource specialist: Behavioural support for a neural hypothesis. Amer Nat., 151, 451–464.CrossRefGoogle Scholar
  3. Bernays, E., & Chapman, R. F. (1994). Host-plant selection by phytophagous insects (312 p). New York: Chapman & Hall, New York.CrossRefGoogle Scholar
  4. Birch, L. C. (1948). The intrinsic rate of natural increase of an insect population. J. Anim. Ecol., 17: 15-26.Google Scholar
  5. Blackman, R.L., & Eastop, V.S. (2000). Aphids on the World’s Crops: An Identification and Information Guide. 2nd Edn., Chichester: John Wiley and Sons.Google Scholar
  6. Braendle, C., Davis, G. K., Brisson, J. A., & Stern, D. L. (2006). Wing dimorphism in aphids. Heredity, 97, 192–199.CrossRefPubMedGoogle Scholar
  7. Brisson, J. A. (2010). Aphid wing dimorphisms: Linking environmental and genetic control of trait variation. Phil Trans R Soc B., 365, 605–616.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Caillaud, M. C., & Via, S. (2000). Specialized feeding behaviour influences both ecological specialization and assortative mating in sympatric host races of pea aphids. Amer Nat., 156, 606–621.CrossRefGoogle Scholar
  9. Carey, J. R. (1993). Applied demography for biologists, with special emphasis on insects (211 p). U.K.: Oxford University Press.Google Scholar
  10. Castaneda, L. E., Figueroa, C. C., Bacigalupe, L. D., & Nespolo, R. F. (2010). Effects of wing polyphenism, aphid genotype and host plant chemistry on energy metabolism of the grain aphid, Sitobion avenae. Journal of Insect Physiology, 56, 1920–1924.Google Scholar
  11. Chi, H. (1988). Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17, 26–34.CrossRefGoogle Scholar
  12. Chi, H. (1990). Timing of control based on the stage structure of pest populations: A simulation approach. Journal of Econ Entomol., 83, 1143–1150.CrossRefGoogle Scholar
  13. Chi, H. (2016). TWOSEX-MSChart: a computer program for age-stage, two-sex life table analysis.Google Scholar
  14. Chi, H. (2017a). TIMING-MSChart: A Computer Program for the Population Projection Based on Age-stage, Two-sex Life Table. National Chung Hsing University, Taichung, Taiwan. URL http://140.120.197.173/Ecology/Download/TIMING-MSChart.rar.
  15. Chi, H. (2017b). TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. http://140.120.197.173/Ecology/Download/ Twosex-MSChart.rar. National Chung Hsing University, Taichung.
  16. Chi, H., & Liu, H. (1985). Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin., 24, 225–240.Google Scholar
  17. Chi, H., & Su, H. Y. (2006). Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology, 35, 10–21.CrossRefGoogle Scholar
  18. Davis, J. A., & Radcliffe, E. B. (2008). Reproduction and feeding behavior of Myzus persicae on four cereals. Journal of Economic Entomology, 101(1), 9–16.CrossRefPubMedGoogle Scholar
  19. Emden, H. (2002). Mechanisms of resistance: Antibiosis, Antixenosis, tolerance, nutrition. In: Pimentel D (ed). Encyclopedia of Pest Management. Marcel Dekker, Inc., 483–600.Google Scholar
  20. Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York: Chapman & Hall.CrossRefGoogle Scholar
  21. FAO (2014). FAOSTAT database collections. Food and Agriculture Organization of the United Nations. Rome. Access date: 2017–11-24. URL: http://faostat.fao.org.
  22. Fisher, R. A. (1930). The Genetical theory of natural selection (318 p). Oxford: Clarendon Press.CrossRefGoogle Scholar
  23. Francis, F., Gerkens, P., Harmel, N., Mazzucchelli, G., De Pauw, E., & Haubruge, E. (2006). Proteomics in Myzus persicae: Effect of aphid host plant switch. Insect Biochemistry and Molecular Biology, 36, 219–227.CrossRefPubMedGoogle Scholar
  24. Francis, F., Vanhaelen, N., & Haubruge, E. (2005). Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae Aphid. Archives of Insect Biochemistry and Physiology, 58, 166–174.CrossRefPubMedGoogle Scholar
  25. Goodman, D. (1982). Optimal life histories, optimal notation, and the value of reproductive value. Amer Nat., 119, 803–823.CrossRefGoogle Scholar
  26. Goundoudaki, S., Tsitsipis, J. A., Margaritopoulos, J. T., Zarpas, K. D., & Divanidis, S. (2003). Performance of the tobacco aphid Myzus persicae (Hemiptera: Aphididae) on oriental and Virginia tobacco cultivars. Agr Forest Entomol., 5, 285–291.CrossRefGoogle Scholar
  27. Greer, E., & Nielsen, M. T. (1988). Leaf trichomes in tobacco-insect relationships. II. Resistance to green aphid Myzus persicae. Tob Sci., 32, 66–70.Google Scholar
  28. Herman, M. A. B., Nault, B. A., & Smart, C. D. (2008). Effects of plant growth-promoting rhizobacteria on bell pepper production and green peach aphid infestations in New York. Crop Protection, 27, 996–1002.CrossRefGoogle Scholar
  29. Hesler, L. S., & Dashiell, K. E. (2011). Antixenosis to the soybean aphid in soybean lines. The Open Entomology Journal, 5, 39–44.CrossRefGoogle Scholar
  30. Horber, E. (1982). Types and classification of resistance. In F. G. Maxwell & P. R. Jennings (Eds.), Plant resist to insects (pp. 15–21). New York: John Wiley.Google Scholar
  31. Huang, Y. B., & Chi, H. (2011). The age-stage, two-sex life table with an offspring sex ratio dependent on female age. Journal of Agriculture and Forestry, 60(4), 337–345.Google Scholar
  32. Huang, Y. B., & Chi, H. (2012). Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci., 19, 263–273.CrossRefGoogle Scholar
  33. Johnson, A. W., Sisson, V. A., Snook, M. E., Fortnum, B. A., & Jackson, D. M. (2002). Aphid resistance and leaf surface chemistry of sugar ester producing tobaccos. Journal of Entomological Science, 37, 154–165.CrossRefGoogle Scholar
  34. Kaydan, M. B., Atlıhan, R., & Toros, S. (2006). Effects of tobacco cultivars on Eidonomy and life table parameters of the aphid species Myzus persicae (Hemiptera: Aphididae). Entomol Gen., 29(1), 61–70.CrossRefGoogle Scholar
  35. Kawada, K. (1987). Polymorphism and morph determination In: Minks AK, Harrewijn P, editors. Aphids, their biology, natural enemies and control Amsterdam: Elsevier. 255–266.Google Scholar
  36. La Rossa, F. R., Vasicek, A., & López, M. C. (2013). Effects of pepper (Capsicum annuum) cultivars on the biol- ogy and life table parameters of Myzus persicae (Sulz.) (Hemiptera: Aphididae). Neotropical Entomology, 42, 634–641.CrossRefPubMedGoogle Scholar
  37. Leslie, P. H. (1945). On the use of matrices in certain population mathematics. Biometrika, 33: 183-212.Google Scholar
  38. Lewis, E. G. (1942). On the generation and growth of a population. Sankhy a, 6: 93-96.Google Scholar
  39. Lorenzen, J. H., Balbyshev, N. F., Lafta, A. M., Casper, H., Tian, X., & Sagredo, B. (2001). Resistant potato selections contain leptine and inhibit development of the colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 94, 1260–1267.CrossRefPubMedGoogle Scholar
  40. Mdellel, L., & Kamel, M. B. H. (2014). Effects of different cultivars of pepper on the biological parameters of the green peach aphid. Eur J Environ Sci., 4(2), 102–105.CrossRefGoogle Scholar
  41. Mehrparvar, M. M., Zytynska, S. E., & Weisser, W. W. (2013). Multiple cues for winged morph production in an aphid Metacommunity. PLoS One, 8(3), e58323. https://doi.org/10.1371/journal.pone.0058323.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Meng, J., Zhang, C., Chen, X., Cao, Y., & Shang, S. (2014). Differential protein expression in the susceptible and resistant Myzus persicae (Sulzer) to imidacloprid. Pest Biochem Physio., 115, 1–8.CrossRefGoogle Scholar
  43. Metcalf, R.L., & Luckman, W.H. (1994). Introduction to insect pest management, 3rd Ed. New York: John Wiley & Sons, Inc.Google Scholar
  44. Mirmohammadi, S., Allahyari, H., Nematollahi, M. R., & Saboori, A. (2009). Effect of host plant on biology and life table parameters of Brevicoryne brassicae (Hemiptera: Aphididae). Ann Entomol Soc Amer., 102(3), 450–455.CrossRefGoogle Scholar
  45. Müller, C. B., Williams, I. S., & Hardie, J. (2001). The role of nutrition, crowding, and interspecific interactions in the development of winged aphids. Ecol Ent., 26, 330–340.CrossRefGoogle Scholar
  46. Naseri, B., Golparvar, Z., Razmjou, J., & Golizadeh, A. (2014). Age-stage, two-sex life table of Helicoverpa armigera (Lepidoptera: Noctuidae) on different bean cultivars. J Agric Sci Tech., 16, 19–32.Google Scholar
  47. Niemeyer, H. M. (1990). The role of secondary plant compounds in aphid–host interactions. In R. K. Campbell & R. D. Eikenbary (Eds.), Aphid–plant genotype interactions (pp. 187–205). Amsterdam: Elsevier.Google Scholar
  48. Obopile, M., & Ositile, B. (2010). Life table and population parameters of cowpea aphid, Aphis craccivora Koch (Homoptera: Aphididae) on five cowpea Vigna unguiculata (L. Walp.) cultivars. Journal of Pest Science, 83, 9–14.CrossRefGoogle Scholar
  49. Ogawa, K., & Miura, T. (2014). Aphid polyphenisms: Trans-generational developmental regulation through viviparity. Frontiers in Physiology, 5(1), 1–11.PubMedPubMedCentralGoogle Scholar
  50. Özgökçe, M. S., & Atlıhan, R. (2004). Biological features and life table parameters of the mealy plum aphid Hyalopterus pruni on different apricot cultivars. Phytoparasitica, 33(1), 7–14.CrossRefGoogle Scholar
  51. Painter, R. H. (1951). Insect resistance in crop plants (520 p). New York: The Macmillan Co..Google Scholar
  52. Polat Akköprü, E., Atlıhan, R., Okut, H., & Chi, H. (2015). Demographic assessment of plant cultivar resistance to insect pests: A case study of the dusky-veined walnut aphid (Hemiptera: Callaphididae) on five walnut cultivars. Journal of Economic Entomology, 108, 378–387.CrossRefGoogle Scholar
  53. Razmjou, J., & Golizadeh, A. (2010). Performance of corn leaf aphid, Rhopalosiphum maidis (Fitch) (Homoptera: Aphididae) on selected maize hybrids under laboratory conditions. J App Entomol and Zool., 45, 267–274.CrossRefGoogle Scholar
  54. Saljoqi, A. U. R., Khan, K., & Rahman, S. U. (2009). Integrated management of potato-peach aphid, Myzus persicae (Sulzer). Sarhad J Agric., 25, 573–580.Google Scholar
  55. Sauge, M. H., Kervella, J., & Pascal, T. (1998). Settling behaviour and reproductive potential of the green peach aphid Myzus persicae on peach cultivars and a related wild Prunus. Entomol Exp App., 89, 233–242.CrossRefGoogle Scholar
  56. Severson, R. F., Eckel, R. V. W., & Jackson, D. M. (1985). Cuticular constituents of tobacco: Factors affecting their production and their role in insect disease resistance and smoke quality. Rec Adv Tob Sci., 11, 105–174.Google Scholar
  57. Shaw, M. J. P. (1970). Effects of population density on alienicolae of Aphis fabae Scop. I. Effect of crowding on production of alatae in laboratory. Ann App Biol., 65, 191–196.Google Scholar
  58. Simpson, S. J., Sword, G. A., & Lo, N. (2011). Polyphenism in Insects. Curr Biol., 21, 738–749.CrossRefGoogle Scholar
  59. Smith, C.M. (2005). Plant Resistance to Arthropods (pp. 37–63). Dordrechdt. The Netherlands: Springer.Google Scholar
  60. Sulistyo, A., & Inayati, A. (2016). Mechanisms of antixenosis, antibiosis, and tolerance of fourteen soybean genotypes in response to whiteflies (Bemisia tabaci). Biodiversitas, 17(2), 447–453.Google Scholar
  61. Sutherland, O. R. W. (1969). The role of crowding in the production of winged forms by two strains of the pea aphid. Acyrthosiphon pisum. J Insect Physiol., 15, 1385–1410.CrossRefGoogle Scholar
  62. Tuan, S. J., Lee, C. C., & Chi, H. (2014a). Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Management Science, 70, 805–813.CrossRefPubMedGoogle Scholar
  63. Tuan, S. J., Lee, C. C., & Chi, H. (2014b). Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag Sci. 70: 1936.Google Scholar
  64. Yang, T., & Chi, H. (2006). Life table and development of Bemisia argentifolii (Homoptera: Aleyrodidae) at different temperature. Journal of Economic Entomology, 99, 691–698.CrossRefPubMedGoogle Scholar
  65. Zhang, F., Li, X., Zhang, Y., Coates, B., Zhou, X., & Cheng, D. (2015). Bacterial symbionts, Buchnera, and starvation on wing dimorphism in English grain aphid, Sitobion avenae (F.) (Homoptera: Aphididae). Frontiers in Physiology, 6, 155.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Mehmet Salih Özgökçe
    • 1
  • Hsin Chi
    • 2
  • Remzi Atlıhan
    • 1
  • Hilmi Kara
    • 1
  1. 1.Faculty of Agriculture, Plant Protection DepartmentVan Yuzuncu Yil UniversityVanTurkey
  2. 2.Faculty of Agricultural Sciences and Technologies, Plant Production and TechnologiesNiğde Ömer Halisdemir UniversityNiğdeTurkey

Personalised recommendations