, Volume 46, Issue 2, pp 263–272 | Cite as

Demography of Conyza bonariensis (Asteraceae) in a ruderal Mediterranean habitat

  • Castor Zambrano-Navea
  • Fernando Bastida
  • Jose L. Gonzalez-Andujar


Conyza bonariensis is an invasive weed of increasing importance in subtropical and warm-temperate regions worldwide, both in non-agricultural habitats and in annual and perennial crops, especially under no-till management. To gain insigths on basic life cycle processes determining the demographic success of C. bonariensis, we studied for this species during two seasons seedling emergence patterns, survival to the adult stage and fecundity in a ruderal Mediterranean habitat in which C. bonariensis was a component of the plant community. The influence of emergence date on survival and fecundity was studied using four successive sowing dates, i.e. cohorts, encompassing the favorable season for plant establishment. The mean rate of seedling emergence was 61%. Emergence patterns were characterized by high initial emergence rates, which were highly dependent on rainfall. The mean rate of survival to the adult stage was 33%. Fecundity reached a mean value of 86,066 achenes and presented density-dependent regulation.. Plant survival and fecundity were positively related to cohort earliness and thus earlier cohorts should preferably be targeted for an effective management of C. bonariensis.


Cohort Density-dependence Seedling emergence Plant fecundity Hairy fleabane Survivorship Invasive species 



This work was supported by grant AGL2009-7883 of the FEDER (European Regional Development Funds) and of the Spanish Ministry of Economy and Competitiveness (MINECO). CZ-N acknowledges a scholar grant from CDCH-UCV (Council of Scientific and Humanistic-Central University of Venezuela).


  1. Bhowmik, P. C., & Bekech, M. M. (1993). Horseweed (Conyza canadensis) seed production, emergence, and distribution in no-tillage and conventional tillage corn (Zea mays). Agronomy, 1, 67–71.Google Scholar
  2. Borger, C. P., Scott, J. K., Walsh, H. M., & Powles, S. B. (2009). Demography of Salsola australis populations in the agricultural region of south-west Australia. Weed Research, 49, 391–399.CrossRefGoogle Scholar
  3. Bosnic, A. C., & Swanton, C. J. (1997). Influence of barnyardgrass (Echinochloa crusgalli) time of emergence and density on corn (Zea mays). Weed Science, 45, 276–282.Google Scholar
  4. Buhler, D. D. (1995). Influence of tillage systems on weed population dynamics in corn and soybean in the central USA. Crop Science, 35, 1247–1258.CrossRefGoogle Scholar
  5. Buhler, D. D., & Owen, M. D. (1997). Emergence and survival of horseweed (Conyza canadensis). Weed Science, 45, 98–101.Google Scholar
  6. Cousens, R., & Mortimer, M. (1995). Dynamics of weed populations (p. 332). New York: Cambrige University Press.CrossRefGoogle Scholar
  7. Dauer, J. T., Mortensen, D. A., & Vangessel, M. J. (2007). Temporal and spatial dynamics of long-distance Conyza canadensis seed dispersal. Journal of Applied Ecology, 44, 105–114.CrossRefGoogle Scholar
  8. Fernandez-Quintanilla, C., Navarrete, L., Gonzalez-Andujar, J. L., Fernandez, A., & Sanchez, M. J. (1986). Seedling recruitment and age-specific survivorship and reproduction in populations of Avena sterilis ssp. ludoviciana. Journal of Applied Ecology, 23, 945–955.CrossRefGoogle Scholar
  9. Firbank, L. G., & Watkinson, A. R. (1986). Modelling the population dynamics of an arable weed and effects upon crop yield. Journal of Applied Ecology, 23, 147–159.CrossRefGoogle Scholar
  10. Gallart, M., Mas, M. T., & Verdú, A. M. (2010). Demography of Digitaria sanguinalis: Effect of the emergence time on survival, reproduction, and biomass. Weed Biology and Management, 10, 132–140.CrossRefGoogle Scholar
  11. Gonzalez-Andujar, J. L., & Fernandez-Quintanilla, C. (1991). Modelling the population dynamics of Avena sterilis in winter wheat production under dry-land cereal cropping systems. Journal of Applied Ecology, 28, 16–27.CrossRefGoogle Scholar
  12. Gonzalez-Andujar, J. L., & Fernandez-Quintanilla, C. (1993). Strategies for the control of Avena sterilis in winter wheat production systems in central Spain. Crop Protection, 12, 617–623.CrossRefGoogle Scholar
  13. Gonzalez-Andujar, J. L., Plant, R. E., & Fernandez-Quintanilla, C. (2001). Modeling the effect of farmers’ control decisions on the population dynamics of winter wild oat (Avena sterilis ssp ludoviciana) in an agricultural landscape. Weed Science, 49, 414–422.CrossRefGoogle Scholar
  14. Gramshaw, D., & Stern, W. R. (1977). Survival of annual ryegrass (Lolium-rigidum-gaud) in a mediterranean type environment. 1. Effect of summer grazing by sheep on seed numbers and seed-germination in autumn. Australian Journal of Agricultural Research, 28, 81–91.CrossRefGoogle Scholar
  15. Green, T. D. (2010). The ecology of fleabane (Conyza spp.). PhD Thesis. University of New England. Australia.Google Scholar
  16. Holm, L. G., Doll, J., Holm, E., Pancho, J., & Herbeger, J. (1997). World weeds: natural histories and distribution (p. 1129). Toronto: Wiley.Google Scholar
  17. Izquierdo, J., Gonzalez-Andujar, J. L., Bastida, F., Lezaun, J. A., & Sanchez del Arco, M. J. (2009). A Thermal Time Model to Predict Corn Poppy (Papaver rhoeas) emergence in cereal fields. Weed Science, 57, 660–664.CrossRefGoogle Scholar
  18. Karlsson, L. M., & Milberg, P. (2007). Comparing after-ripening response and germination requirements of Conyza canadensis and Conyza bonariensis (Asteraceae) through logistic functions. Weed Research, 47, 433–441.CrossRefGoogle Scholar
  19. Kempen, H. M., & Graf, J. (1981).Weed seed production. Proc.West. Soc. Weed Sci. 17–19 March. San Diego, California (pp. 78–81).Google Scholar
  20. Kiegel, J. (1995). Seed germination in arid and semiarid regions. In J. Kiegel (Ed.), Seed Dormancy and Germination (pp. 645–700). New York: Marcel Dekker, Inc..Google Scholar
  21. Knezevic, S. Z., & Horak, M. J. (1998). Influence of emergence time and density on redroot pigweed (Amaranthus retroflexus). Weed Science, 46, 665–672.Google Scholar
  22. Marshall, E. J. P. (1989). Distribution Patterns of Plants Associated with Arable Field Edges. Journal of Applied Ecology, 26, 247–257.CrossRefGoogle Scholar
  23. Ming-Xun, R., Xiao-Qiong, L., & Jian-Qing, D. (2010). Genetic variation and spread pattern of invasive Conyza sumatrensis around China’s Three Gorges Dam. Acta Oecologica, 36, 599–603.CrossRefGoogle Scholar
  24. Mokhtassi-Bidgol, I. A., Navarrete, L., Aghaalikhani, M., & Gonzalez-Andujar, J. L. (2013). Modelling the population dynamic and management of Bromus diandrus in cereal. Weed Research, 43, 128–133.Google Scholar
  25. Mulugeta, D., & Stoltenberg, D. E. (1997). Seed bank characterization and emergence of a weed community in a moldboard plow system. Weed Science, 45, 54–60.Google Scholar
  26. Nandula, V. K., Eubank, T. W., Poston, D. H., Koger, C. H., & Reddy, K. N. (2006). Factors affecting germination of horseweed (Conyza canadensis). Weed Science, 54, 898–902.CrossRefGoogle Scholar
  27. Norris, R. F. (1996). Morphological and phenological variation in barnyardgrass (Echinochloa crus-galli) in California. Weed Science, 44, 804–814.Google Scholar
  28. Palmblad, I. G. (1968). Competition in experimental populations of weeds with emphasis on the regulation of population size. Ecology, 49, 26–34.CrossRefGoogle Scholar
  29. Prieur-Richard, A., Lavorel, S., Grigulis, K., & Dos Santos, A. (2000). Plant community diversity and invasibility by exotics: invasion of Mediterranean old fields of Conyza bonariensis and Conyza canadensis. Ecology Letters, 3, 412–422.CrossRefGoogle Scholar
  30. Puricelli, E., Orioli, G., & Sabbatini, M. R. (2002). Demography of Anoda cristata in wide- and narrow-row soyabean. Weed Research, 42, 456–463.CrossRefGoogle Scholar
  31. Regehr, D. L., & Bazzaz, F. A. (1979). The population dynamics of Erigeron canadensis, a successional winter annual. Journal of Ecology, 67, 923–933.CrossRefGoogle Scholar
  32. Schippers, P., & Joenje, W. (2002). Modelling the effect of fertiliser, mowing, disturbance and width on the biodiversity of plant communities of field boundaries. Agriculture, Ecosystems & Environment, 93, 351–365.CrossRefGoogle Scholar
  33. Shrestha, A., Hembree, K., & Wright, S. (2008). Biology and management of horseweed and hairy fleabane in California. University of California, ANR Publication 8314. pp. 1–9.Google Scholar
  34. Shrestha, A., Hanson, B. D., Fidelibus, M. W., & Alcorta, M. (2010). Growth, phenology, and intraspecific competition between glyphosate-resistant and glyphosate-susceptible horseweeds (Conyza canadensis) in the San Joaquin Valley of California. Weed Science, 58, 147–153.CrossRefGoogle Scholar
  35. Thébaud, C., Finzi, A. C., Affre, L., Debussche, M., & Escarré, J. (1996). Assessing why two introduced Conyza differ in their ability to invade Mediterranean old fields. Ecology, 77, 791–804.CrossRefGoogle Scholar
  36. Torra, J., & Recasens, J. (2008). Demography of corn poppy (Papaver rhoeas) in relation to emergence time and crop competition. Weed Science, 56, 826–833.CrossRefGoogle Scholar
  37. Trezzi, M. M., Vidal, R. A., Patel, F., Miotto Junior, E., Debastiani, F., Balbinot Junior, A. A. & Mosquen, R. (2015). Impact of Conyza bonariensis density and establishment period on soyabean grain yield, yield components and economic threshold. Weed Res, 55, 34–41Google Scholar
  38. Urbano, J. M., Borrego, A., Torres, V., Leon, J. M., Jimenez, C., Dinelli, G., & Barnes, J. (2007). Glyphosate-resistant hairy fleabane (Conyza bonariensis) in Spain. Weed Technology, 21, 396–401.CrossRefGoogle Scholar
  39. Verdú, A. M., & Mas, M. T. (2006). Cohort-dependent seedling recruitment, survival and reproductive capacity of Tribulus terrestris. Weed Research, 46, 371–378.CrossRefGoogle Scholar
  40. Vivian, R., Gomes, J. R., Chamma, H. M., Silva, A. A., Fagan, E. B., & Riuz, S. T. (2008). Efeito da luz e da temperatura na germinacao de Alternathera tenella, Conyza bonariensis e Digitaria ciliaris. Planta Daninha, 26, 507–513.CrossRefGoogle Scholar
  41. Widderick, M., Walker, S., & Cook, T. (2012). Flaxleaf fleabane (Conyza bonariensis)-strategic solutions using best management practice. Pakistan Journal of Weed Science Research, 18, 687–693.Google Scholar
  42. Wu, H., & Walker, S. (2004). Fleabane biology and control. In S. R. Walker, M. Widderick, & H. Wu (Eds.), Fleabane: workshop proceedings (pp. 5–6). Toowoomba: CRC for Australian Weed Management.Google Scholar
  43. Wu, H., Walker, S., Rollin, M. J., Tan, D. K., Goeuff, R., & Werth, J. (2007). Germination, persistence, and emergence of flaxleaf fleabane (Conyza bonariensis [L.] Cronquist). Weed Biology and Management, 7, 192–199.CrossRefGoogle Scholar
  44. Wu, H., Walker, S., Robinson, G., & Coombers, N. (2010). Control of Flaxleaf Fleabane (Conyza bonariensis) in Wheat and Sorghum. Weed Technology, 24, 102–107.CrossRefGoogle Scholar
  45. Yamashita, O. M., & Guimarães, S. C. (2010). Germinação das sementes de Conyza canadensis e Conyza bonariensis em função da disponibilidade hídrica no substrato. Planta Daninha, 28, 309–317.CrossRefGoogle Scholar
  46. Zambrano-Navea, C., Bastida, F., & Gonzalez-Andujar, J. L. (2013). A hydrothermal seedling emergence model for Conyza bonariensis. Weed Research, 53, 213–220.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Castor Zambrano-Navea
    • 1
    • 2
  • Fernando Bastida
    • 3
  • Jose L. Gonzalez-Andujar
    • 1
  1. 1.Institute for Sustainable Agriculture (CSIC)CórdobaSpain
  2. 2.Institute of Agronomy and Botany, Faculty of AgronomyCentral University of VenezuelaMaracayVenezuela
  3. 3.Department of Agroforestry Sciences, Campus La RábidaUniversity of HuelvaPalos de la FronteraSpain

Personalised recommendations