Skip to main content

Advertisement

Log in

Expression of different mechanisms of resistance to insects in groundnut under field conditions

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Host plant resistance is an important component of pest management, and information on contribution of different mechanisms of resistance is important for developing cultivars with resistance to the target pests. Therfore, we studied the contribution of different components of resistance in five groundnut genotypes to three insect species occurring in India under field conditions. Plant damage by the larvae of Helicoverpa armigera, Spodoptera litura, and leafhoppers (Empoasca kerri) was evaluated visually on a 1 – 9 damage rating (DR) scale (1 being <10 % leaf damage, and 9 being >80 % leaf damage). Further, the activities of various plant defensive enzymes [peroxidase (POD), polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL), superoxide dismutase (SOD), ascorbate peroxidase (APX), lipoxygenase (LOX) and catalase (CAT)], and the amounts of total phenols, condensed tannins, hydrogen peroxide (H2O2), malondialdehyde (MDA) and proteins were also recorded. The genotypes ICGV 86699, ICGV 86031, ICG 2271 and ICG 1697 suffered lower leaf damage by H. armigera and S. litura (DR 2.6 – 3.2) and E. kerri (DR 2.0 - 3.2) as compared to JL 24 (DR 7.2 and 6.0, respectively). ICGV 86699, ICGV 86031, ICG 2271 and ICG 1697 exhibited greater enzymatic activity, and had more amounts of phenols, condensed tannins, hydrogen peroxide and proteins than the susceptible check, JL 24. There was a positive association between leaf damage and the activity of the defensive enzymes, and the amounts of phenols, condensed tannins and H2O2. These results suggested that the plant defensive enzymes such as POD, PPO, LOX, PAL, SOD, APX and CAT were involved in genotypic resistance to insects, and the resistant genotypes accumulated phenols, condensed tannins, and H2O2 to impart resistance to insects. This information will be useful for developing groundnut genotypes with resistance to insects for sustainable crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arimura, G., Matsui, K., & Takabayashi, J. (2009). Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiology, 50(5), 911–923.

    Article  CAS  PubMed  Google Scholar 

  • Asada, K., & Takahashi, M. (1987). Production and scavenging of active oxygen in photosynthesis. In D. J. Kyle, C. B. Osmond, & C. J. Arntzen (Eds.), Photoinhibition (pp. 227–287). Amsterdam: Elsevier.

    Google Scholar 

  • Barbehenn, R., Dukatz, C., Holt, C., Reese, A., Martiskainen, O., Salminenm, J. P., Yip, L., Tran, L., & Constabel, C. P. (2010). Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance. Oecologia, 164, 993–1004.

    Article  PubMed  Google Scholar 

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improve assay and an assay applicable to acrylamide gels. Annals of Biochemistry, 44, 276–287.

    Article  CAS  Google Scholar 

  • Bernards, M., & Bastrup-Spohr, L. (2008). Phenylpropanoid metabolism induced by wounding and insect herbivory. In A. Schaller (Ed.), Induced plant resistance to herbivory (pp. 189–211). NY: Springer-Verlag.

    Chapter  Google Scholar 

  • Bhonwong, A., Stout, M. J., Attajarusit, J., & Tantasawat, P. (2009). Defensive role of tomato Polyphenol oxidase against cotton bollworm (Helicoverpa armigera) and Beet armyworm (Spodoptera exigua). Journal of Chemical Ecology, 35, 28–38.

    Article  CAS  PubMed  Google Scholar 

  • Birthal, P.S., Parthasarathy, Rao P., Nigam, S.N., Bantilan, M.C.S., & Bhagavatula, S. (2010). Groundnut and Soybean Economies in Asia: Facts, Trends and Outlook. Patancheru 502 324, Andhra Pradesh, India: International Crops Research lnstitute for the Semi-Arid Tropics. 92 pp. ISBN: 978-92-9066-531-1. Order code: BOE 050.

  • Campos-Vergas, R., & Saltveit, M. E. (2002). Involvement of putative chemical wound signals in the induction of phenolic metabolism in wounded lettuce. Physiologia Plantarum, 114, 73–84.

    Article  Google Scholar 

  • Carmak, I., & Horst, J. H. (1991). Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean. (Glycine max). Physiologia Plantarum, 83, 463–468.

    Article  Google Scholar 

  • Chaman, M. E., Corcueram, L. J., Zuniga, G. E., Cardemil, L., & Argandona, V. H. (2001). Induction of soluble and cell wall peroxidases by aphid infestation in barley. Journal of Agricultural Food Sciences, 49, 2249–2253.

    Article  CAS  Google Scholar 

  • Chen, Y., Ni, X., & Buntin, G. D. (2009). Physiological, nutritional and biochemical bases of corn resistance to foliage-feeding fall Armyworm. Journal of Chemical Ecology, 35, 297–306.

    Article  PubMed  Google Scholar 

  • Dhaliwal, G. S., Jindal, V., & Dhawan, A. K. (2010). Insect pest problems and crop losses: Changing trends. Indian Journal of Ecology, 37, 1–7.

    Google Scholar 

  • Gechev, T., Gadjev, I., Van Breusegem, F., Inze, D., Dukiandjiev, S., Toneva, V., & Minkov, I. (2002). Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cellular and Molecular Life Sciences, 59, 708–714.

    Article  CAS  PubMed  Google Scholar 

  • Gulsen, O., Eickhoff, T., Heng-Moss, T., Shearman, R., Baxendale, F., Sarath, G., et al. (2010). Characterization of peroxidase changes in resistant and susceptible warm-season turfgrasses challenged by Blissus occiduus. Arthropod-Plant Interactions, 4, 45–55.

    Article  Google Scholar 

  • Heng-Moss, T. M., Sarath, G., Baxendale, F., Novak, D., Bose, S., Ni, X., Quisenberry, S., et al. (2004). Characterization of oxidative enzyme changes in buffalograsses challenged by Blissus occiduus. J. Econ. Entom., 97, 1086–1095.

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand, D., & Hymowitz, T. (1983). Lipoxygenase activities in developing and germinating soybean seeds with and without Lipoxygenase-1. Botanical Gazette, 144, 212–216.

    Article  Google Scholar 

  • Howe, G. A., & Jander, G. (2008). Plant immunity to herbivores. Annual Review of Plant Biology, 59, 41–66.

    Article  CAS  PubMed  Google Scholar 

  • Huang, W., Zhikuan, J., & Qingfang, H. (2007). Effects of herbivore stress by Aphis medicaginis Koch on the melondialdehyde contents and activities of protective enzymes in different alfalfa varieties. Acta Ecologica Sinica, 27(6), 2177–2183.

    Article  CAS  Google Scholar 

  • Khattab, H., & Khattab, M. (2005). Responses of Eucalypt trees to the insect feeding (Gall-forming psyllid). International Journal of Agricultural Biology, 7 (6), DOI: 1560–8530/2005/07–6–979–984.

  • Lowry, O. H., Rosebrough, N. I., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  PubMed  Google Scholar 

  • Maffei, M. E., Mithofer, A., & Boland, W. (2007). Insects feeding on plants: Rapid signals and responses preceding the induction of photochemical release. Phytochemistry, 68, 2946–2959.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, A. M., & Harel, E. (1979). Polyphenol oxidases in plant. Phytochemistry, 18, 193–215.

    Article  CAS  Google Scholar 

  • Noreen, Z., & Ashraf, M. (2009). Change in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (Raphanus sativus L.). Environmental and Experimental Botany, 67, 395–402.

    Article  CAS  Google Scholar 

  • Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Sciences, 144, 31–43.

    Google Scholar 

  • Robert, E. B. (1971). Method for estimation of tannin in grain sorghum. Agrochemical Journal, 63, 511.

    Google Scholar 

  • Sahayaraj, K., & Raju, G. (2003). Pest and natural enemy complex of groundnut in Tuticorin and Tirunelveli districts of Tamil Nadu, India. International Arachis Newsletter, 233, 25–29.

    Google Scholar 

  • Sankar, B., Abdul Jaleel, C., Manivannan, P., Kishore Kumar, A., Somasundaram, R., & Panneerselvam, R. (2007). Effect of paclobutrazol on water stress amelioration through antioxidants and free radical scavenging enzymes in Arachis hypogaea L. Colloids Surfaces. B: Biointeractions, 60, 229–235.

    CAS  Google Scholar 

  • Savage, G. P., & Keenan, J. I. (1994). The composition and nutritive value of groundnut kernels. In J. Smartt (Ed.), The groundnut crop: A scientific basis for improvement (pp. 173–213). London, UK: Chapman and Hall.

    Chapter  Google Scholar 

  • Shannon, L. M., Kay, E., & Lew, J. Y. (1966). Peroxidase isozymes from horse radish roots. Isolation and physical properties. Journal of Biological Chemistry, 241, 2166–2172.

    CAS  PubMed  Google Scholar 

  • Sharma, H. C. (2007). Host plant resistance: Modern approaches and limitations. Indian Journal Plant Protection, 35, 179–184.

    Google Scholar 

  • Sharma, H. C. (2005). Heliothis/Helicoverpa Management: Emerging trends and strategies for future research. New Delhi, India: Oxford and IBH Publishing Co. Pvt.Ltd.. 469 pp.

    Google Scholar 

  • Sharma, H. C., Pampathy, G., Dwivedi, S. L., & Reddy, L. J. (2003). Mechanism and diversity of resistance to insect pests in wild relatives of groundnut. Journal of Economic.Entomology, 96(6), 1886–1897.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, H. C., Sujana, G., & Rao, D. M. (2009). Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod-Plant Interactions, 3(3), 151–161.

    Article  Google Scholar 

  • Walling, L. L. (2000). The myriad plant responses to herbivores. Journal of Plant Growth Regululation, 19, 195–216.

    CAS  Google Scholar 

  • War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S., & Sharma, H. C. (2012). Mechanisms of plant defense against insect herbivores. Plant Signaling and Behavior, 7(10), 1306–1320.

    Article  PubMed Central  PubMed  Google Scholar 

  • War, A. R., Paulraj, M. G., Hussain, B., Buhroo, A. A., Ignacimuthu, S., & Sharma, H. C. (2013). Effect of plant secondary metabolites on Helicoverpa armigera. Journal of Pest Science, 86, 399–408.

    Article  Google Scholar 

  • War, A. R., Paulraj, M. G., Ignacimuthu, S., & Sharma, H. C. (2014). Induced resistance to Helicoverpa armigera through exogenous application of jasmonic acid and salicylic acid in groundnut, Arachis hypogaea. Pest Management Science. doi:10.1002/ps.3764.

    PubMed  Google Scholar 

  • War, A. R., Paulraj, M. G., War, M. Y., & Ignacimuthu, S. (2011). Jasmonic acid- mediated induced resistance in groundnut (Arachis hypogaea L.) against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Journal of Plant Growth Regulation, 30, 512–523.

    Article  CAS  Google Scholar 

  • Wightman, J. A., & Amin, P. W. (1988). Groundnut pests and their control in the semi-arid tropics. Tropical pest Management, 34, 218–266.

    Article  Google Scholar 

  • Wightman, J. A., & Ranga Rao, G. V. (1994). Groundnut pests. In J. Smart (Ed.), The groundnut crop: A scientific basis for improvement (pp. 395–479). London: Chapman and Hall publishers.

    Chapter  Google Scholar 

  • Zhang, S. Z., Hau, B. Z., & Zhang, F. (2008). Induction of the activities of antioxidative enzymes and the levels of malondialdehyde in cucumber seedlings as a consequence of Bemisia tabaci (Hemiptera: Aleyrodidae) infestation. Arthropod-Plant Interactions, 2, 209–213.

    Article  Google Scholar 

  • Zieslin, N., & Ben-Zaken, R. (1993). Peroxidase activity and presence of phenolic substances in penduncles of rose flowers. Plant Physiology and Biochemistry, 31, 333–339.

    CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to entomology staff, ICRISAT, for their assistance in carrying out the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Chand Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

War, A.R., Munghate, R.S. & Sharma, H.C. Expression of different mechanisms of resistance to insects in groundnut under field conditions. Phytoparasitica 43, 669–677 (2015). https://doi.org/10.1007/s12600-015-0479-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-015-0479-9

Key words

Navigation