Magnetic properties and anomalous Hall effect of Mn3Sn thin films controlled by defects and ferroelectric 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 substrate

Abstract

Noncollinear antiferromagnetic Mn3Sn films have received much attention due to their potential applications in antiferromagnetic spintronic devices. In this work, single-phase polycrystalline antiferromagnetic Mn3Sn thin films were successfully prepared by magnetron sputtering. The defects in the thin films were regulated by adjusting the sputtering power. The relationship among the films structure, the anomalous Hall effect (AHE) and the defects was investigated. High defect concentration in the Mn3Sn films led to large room temperature ferromagnetic moments. The maximum saturation magnetization reached up to ~ 16 kA·m−1 (36 mμB/Mn), which was much larger than the values reported in literatures. The coercive field of 38 mT was obtained in a high-quality Mn3Sn film, which effectively reduced the flipping magnetic field. Moreover, the anomalous Hall resistance and coercive field of the Mn3Sn films prepared on the ferroelectric substrates were manipulated through an applied electric field, indicating that the piezoelectric stress has a great influence on the nonzero Berry curvature of the triangular spin structure in the antiferromagnetic materials. These results will promote the potential application of Mn3Sn in high-density and low-power antiferromagnetic spintronic devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. [1]

    Nakatsuji S, Kiyohara N, Higo T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature. 2015;527(7577):212.

    CAS  Article  Google Scholar 

  2. [2]

    Qin PX, Yan H, Wang XN, Feng ZX, Guo HX, Zhou XR, Wu HJ, Zhang X, Leng ZGG, Chen HY, Liu ZQ. Noncollinear spintronics and electric-field control: a review. Rare Met. 2020;39(2):95.

    CAS  Article  Google Scholar 

  3. [3]

    Tomiyoshi S, Yamaguchi Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J Phys Soc Jpn. 1982;51(8):2478.

    CAS  Article  Google Scholar 

  4. [4]

    Brown PJ, Nunez V, Tasset F, Forsyth JB, Radhakrishna P. Determination of the magnetic structure of Mn3Sn using generalized neutron polarization analysis. J Phys Condens Matter. 1990;2(47):9409.

    CAS  Article  Google Scholar 

  5. [5]

    Kuroda K, Tomita T, Suzuki MT, Bareille C, Nugroho AA, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Takeshi K, Nakatsujiet S. Evidence for magnetic Weyl fermions in a correlated metal. Nat Mater. 2017;16(11):1090.

    CAS  Article  Google Scholar 

  6. [6]

    Ohmori H, Tomiyoshi S, Yamauchi H, Yamamoto H. Spin structure and weak ferromagnetism of Mn3Sn. J Magn Magn Mater. 1987;70(1–3):249.

    Article  Google Scholar 

  7. [7]

    Ikeda T, Tsunoda M, Oogane M, Oh S. Anomalous Hall effect in polycrystalline Mn3Sn thin films. Appl Phys Lett. 2018;113(22):222405.

    Article  Google Scholar 

  8. [8]

    Xiao D, Chang MC, Niu Q. Berry phase effects on electronic properties. Rev Mod Phys. 2010;82(3):1959.

    CAS  Article  Google Scholar 

  9. [9]

    Miyasato T, Abe N, Fujii T, Asamitsu A, Onoda S, Onose Y, Nagaosa N, Tokuraet Y. Crossover behavior of the anomalous Hall effect and anomalous Nernst effect in itinerant ferromagnets. Phys Rev Lett. 2007;99(8):086602.

    CAS  Article  Google Scholar 

  10. [10]

    Burkov AA, Balents L. Weyl semimetal in a topological insulator multilayer. Phys Rev Lett. 2011;107(12):127205.

    CAS  Article  Google Scholar 

  11. [11]

    Wan X, Turner AM, Vishwanath A, Savrasov SY. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys Rev B. 2011;83(20):205101.

    Article  Google Scholar 

  12. [12]

    Kubler J, Felser C. Weyl fermions in antiferromagnetic Mn3Sn and Mn3Ge. Europhys Lett. 2017;120(4):47002.

    Article  Google Scholar 

  13. [13]

    Kimata M, Chen H, Kondou K, Sugimoto S, Muduli PK. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature. 2019;565(7741):627.

    CAS  Article  Google Scholar 

  14. [14]

    Higo T, Qu D, Li Y, Chien CL, Otani Y. Anomalous Hall effect in thin films of the Weyl antiferromagnet Mn3Sn. Appl Phys Lett. 2018;113(20):202402.

    Article  Google Scholar 

  15. [15]

    Ikeda T, Tsunoda M, Oogane M, Oh S. Improvement of large anomalous Hall effect in polycrystalline antiferromagnetic Mn3+xSn thin films. IEEE Tran Magn. 2019;55(7):1.

    Article  Google Scholar 

  16. [16]

    You Y, Chen X, Zhou X, Gu Y, Zhang R, Pan F, Song C. Anomalous Hall effect-like behavior with in-plane magnetic field in noncollinear antiferromagnetic Mn3Sn films. Adv Electron Mater. 2019;5(3):1800818.

    Article  Google Scholar 

  17. [17]

    Markou A, Taylor JM, Kalache A, Werner P. Noncollinear antiferromagnetic Mn3Sn films. Phys Rev Mater. 2018;2(5):051001.

    CAS  Article  Google Scholar 

  18. [18]

    Lu X, Ju H, Liu S, Xi J, Li B. Perpendicular magnetic anisotropy and thermal stability in CoSiB/Pd multilayers. Chin J Rare Met. 2018;42(10):1054.

    Google Scholar 

  19. [19]

    Wang WG, Li M, Hageman S, Chien CL. Electric-field-assisted switching in magnetic tunnel junctions. Nat Mater. 2012;11(1):64.

    CAS  Article  Google Scholar 

  20. [20]

    Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds KW, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H, Wang K. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure. Nat Mater. 2017;16(7):712.

    CAS  Article  Google Scholar 

  21. [21]

    Lai Z, Li C, Li Z, Liu X, Zhou Z, Mi W, Liu M. Electric field-tailored giant transformation of magnetic anisotropy and interfacial spin coupling in epitaxial γ′-Fe4N/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(011) multiferroic heterostructures. J Mater Chem C. 2019;7(28):8537.

    CAS  Article  Google Scholar 

  22. [22]

    Yang Y, Yao Y, Chen L, Huang H, Zhang B, Lin H, Luo Z, Gao C, Lu YL, Li X, Xiao G, Feng C, Zhao YG. Controlling the anomalous Hall effect by electric-field-induced piezo-strain in Fe40Pt60/(001)-Pb(Mg1/3Nb2/3)0.67Ti0.33O3 multiferroic heterostructures. Appl Phys Lett. 2018;112(3):033506.

    Article  Google Scholar 

  23. [23]

    Lai Z, Li P, Mi W. Magnetoelectric coupling in γ′-Fe4N/Pb(Mg1/3Nb2/3)07Ti0.3O3 multiferroic heterostructures. J Appl Phys. 2019;126(11):113901.

    Article  Google Scholar 

  24. [24]

    Liu M, Hao L, Jin T, Cao J, Bai J, Wu D, Wang Y, Wei F. Electric-field manipulation of coercivity in FePt/Pb(Mg1/3Nb2/3)O3–PbTiO3 heterostructures investigated by anomalous Hall effect measurement. Appl Phys Express. 2015;8(6):063006.

    Article  Google Scholar 

  25. [25]

    Feng Z, Yan H, Liu Z. Electric-field control of magnetic order: from FeRh to topological antiferromagnetic spintronics. Adv Electron Mater. 2019;5(1):1800466.

    Article  Google Scholar 

  26. [26]

    Lu RB, Ma ZH, Zhang TL, Jiang CB. Chemical synthesis of SmCo5/Co magnetic nanocomposites. Rare Met. 2019;38(4):306.

    CAS  Article  Google Scholar 

  27. [27]

    Wang X, Feng Z, Qin P, Yan H, Zhou X, Guo H, Leng Z, Chen W, Jia Q, Hu Z, Wu H, Zhang X, Jiang C, Liu Z. Integration of the noncollinear antiferromagnetic metal Mn3Sn onto ferroelectric oxides for electric-field control. Acta Mater. 2019;181:537.

    CAS  Article  Google Scholar 

  28. [28]

    Yang H, Sun Y, Zhang Y, Shi WJ, Parkin SSP, Yan B. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J Phys. 2017;19(1):015008.

    Article  Google Scholar 

  29. [29]

    Duan TF, Ren WJ, Liu WL, Li SJ, Liu W, Zhang ZD. Magnetic anisotropy of single-crystalline Mn3Sn in triangular and helix-phase states. Appl Phys Lett. 2015;107(8):082403.

    Article  Google Scholar 

  30. [30]

    Abeles F, Lopez-Rios T, Tadjeddine A. Investigation of the metal-electrolyte interface using surface plasma waves with ellipsometric detection. Solid State Commun. 1975;16(7):843.

    CAS  Article  Google Scholar 

  31. [31]

    Lukashev P, Sabirianov RF, Belashchenko K. Theory of the piezomagnetic effect in Mn-based antiperovskites. Phys Rev B. 2008;78(18):184414.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Key Research and Development Program of Shanxi Province (No. 201803D421046) and the Natural Science Foundation of Shanxi Province (No. 201901D111267).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhong-Ping Zhao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, ZP., Guo, Q., Chen, FH. et al. Magnetic properties and anomalous Hall effect of Mn3Sn thin films controlled by defects and ferroelectric 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 substrate. Rare Met. (2021). https://doi.org/10.1007/s12598-020-01673-1

Download citation

Keywords

  • Noncollinear antiferromagnet
  • Mn3Sn
  • Anomalous Hall effect
  • Ferromagnetic moment
  • Electric field manipulation