Synthesis of Ba-doped porous LaFeO3 microspheres with perovskite structure for rapid detection of ethanol gas

Abstract

In this work, porous La1−xBaxFeO3 (x = 0.01, 0.02, 0.03, 0.04 and 0.05) microspheres of the orthorhombic perovskite phase were prepared by an environment-friendly one-step hydrothermal method with a series of characterization of the six sensing nanomaterials. Characterization results show that their grain size is between 21.2 and 23.2 nm, and the grain growth is inhibited with the increase in Ba-doping concentration. The samples are all spherical with a diameter of about 10 μm, and the surface is very rough. By the gas sensing study of the samples, the results show that the La1−xBaxFeO3 sensor exhibits a fairly high response to the ethanol gas. In particular, the La1−xBaxFeO3 microspheres with a Ba-doping concentration of 2 mol% showed not only a significant improvement in sensitivity but also a rather rapid response recovery time compared to the undoped samples, demonstrating the superiority as an ethanol sensing nanomaterial. More importantly, the optimum operating temperature of La0.98Ba0.02FeO3 is only 200 °C, while that of the pure LaFeO3 is 260 °C. The Ba-doped porous microspheres prepared are a high-performance sensing material capable of rapid and accurate detection of ethanol.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. [1]

    Xue Z, Cheng Z, Xu JQ. Controllable evolution of dual defect Zni and VO associate-rich ZnO nanodishes with (0001) exposed facet and its multiple sensitization effect for ethanol detection. ACS Appl Mater Interfaces. 2017;9(47):41559.

    CAS  Article  Google Scholar 

  2. [2]

    Anoshkin IV, Nasibulin AG, Mudimela PR. Single-walled carbon nanotube networks for ethanol vapor sensing applications. Nano Res. 2012;6(2):77.

    Article  CAS  Google Scholar 

  3. [3]

    Fang X, Hu L, Ye C, Zhang L. One-dimensional inorganic semiconductor nanostructures: a new carrier for nanosensors. Pure Appl Chem. 2010;82(11):2185.

    CAS  Article  Google Scholar 

  4. [4]

    Zhao B, Wang F, Chen HY, Zheng LX, Su LX, Zhao DX, Fang XS. An ultrahigh responsivity (9.7 mA·W−1) self-powered solar-blind photodetector based on individual ZnO–Ga2O3 heterostructures. Adv Funct Mater. 2017;27(17):1700264.

    Article  CAS  Google Scholar 

  5. [5]

    Yan HH, Song P, Zhang S, Yang ZX, Wang Q. Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets. J Alloys Comp. 2016;662:118.

    CAS  Article  Google Scholar 

  6. [6]

    Ning Y, Zhang ZM, Teng F, Fang XS. Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small. 2018;14(13):1703754.

    Article  CAS  Google Scholar 

  7. [7]

    Lin TY, Zhang XY, Huang X, Gong XP, Zhang JJ, Hu XJ. Microstructure and properties of microarc oxidation coating formed on aluminum alloy with compound additives nano-TiO2 and nano-ZnO. Rare Met. 2018;37(11):976.

    CAS  Article  Google Scholar 

  8. [8]

    Ji JH, Xiao YF, Shen B, Yi QY, Zhang JL, Xing MY. Magnetic separation of metal sulfides/oxides by Fe3O4 at room temperature and atmospheric pressure. Rare Met. 2019;38(5):379.

    CAS  Article  Google Scholar 

  9. [9]

    Fan YY, Tu HL, Pang Y, Wei F, Zhao HB, Yang Y, Ren TL. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 2020;39(6):651.

    CAS  Article  Google Scholar 

  10. [10]

    Song P, Han D, Zhang HH, Li J, Yang ZX, Wang Q. Hydrothermal synthesis of porous In2O3 nanospheres with superior ethanol sensing properties. Sens Actuators B. 2014;196:434.

    CAS  Article  Google Scholar 

  11. [11]

    Voznyy O. Realizing ultra-pure red emission with Sn-based lead-free perovskites. Rare Met. 2020;39(4):330.

    CAS  Article  Google Scholar 

  12. [12]

    Phan TTN, Nikoloski AN, Bahri PA, Li D. Optimizing photocatalytic performance of hydrothermally synthesized LaFeO3 by tuning material properties and operating conditions. J Environ Chem Eng. 2018;6(1):1209.

    CAS  Article  Google Scholar 

  13. [13]

    Panahi PN, Rasoulifard MH, Babaei S. Photocatalytic activity of cation (Mn) and anion (N) substitution in LaCoO3 nanoperovskite under visible light. Rare Met. 2020;39(2):139.

    Article  CAS  Google Scholar 

  14. [14]

    Song P, Wang Q, Zhang Z, Yang ZX. Synthesis and gas sensing properties of biomorphic LaFeO3 hollow fibers templated from cotton. Sens Actuators B. 2010;147(1):248.

    CAS  Article  Google Scholar 

  15. [15]

    Lantto V, Saukko S, Toan NN, Reyes LF. Gas sensing with perovskite-like oxides having ABO3 and BO3 structures. J Electroceramics. 2004;13(1–3):721.

    CAS  Article  Google Scholar 

  16. [16]

    Wang Z, Chen C, Feng C, Wang J, Zou B, Zhao M, Wu F. Synthesis, characterization and humidity sensitive properties of nanocrystalline LaCoxFe1−xO3. Acta Phys-Chim Sin. 2008;24(3):375.

    CAS  Article  Google Scholar 

  17. [17]

    Cao K, Cao ES, Zhang YJ, Hao WT, Sun L, Peng H. The influence of nonstoichiometry on electrical transport and ethanol sensing characteristics for nanocrystalline LaFexO3−δ, sensor. Sens Actuators B. 2016;230:592.

    CAS  Article  Google Scholar 

  18. [18]

    Barbero BP, Gamboa JA, Cadus LE. Synthesis and characterization of La1−xCaxFeO3perovskite-type oxide catalysts for total oxidation of volatile organic compounds. Appl Catal B. 2006;65(1–2):21.

    CAS  Article  Google Scholar 

  19. [19]

    Yao PJ, Wang J, Chu WL, Hao YW. Preparation and characterization of La1−xSrxFeO3 materials and their formaldehyde gas-sensing properties. J Mater Sci. 2013;48(1):441.

    CAS  Article  Google Scholar 

  20. [20]

    Xiao HX, Xue C, Song P, Li J, Wang Q. Preparation of porous LaFeO3 microspheres and their gas-sensing property. Appl Surf Sci. 2015;337:65.

    CAS  Article  Google Scholar 

  21. [21]

    Xiang J, Chen X, Zhang XK, Gong L. Preparation and characterization of Ba-doped LaFeO3 nanofibers by electrospinning and their ethanol sensing properties. Mater Chem Phys. 2018;213:122.

    CAS  Article  Google Scholar 

  22. [22]

    Fan K, Qin HW, Zhang ZL, Hu JF. Gas sensing properties of nanocrystalline La0.75Ba0.25FeO3 thick-film sensors. Sens Actuators B. 2012;171:302.

    Article  CAS  Google Scholar 

  23. [23]

    Sun LH, Qin HW, Wang KY, Zhao M, Hu JF. Structure and electrical properties of nanocrystalline La1−xBaxFeO3 for gas sensing application. Mater Chem Phys. 2011;125(1–2):305.

    CAS  Article  Google Scholar 

  24. [24]

    Song P, Zhang HH, Han D, Li J, Yang ZX, Wang Q. Preparation of biomorphic porous LaFeO3 by sorghum straw biotemplate method and its acetone sensing properties. Sens Actuators B. 2014;196:140.

    CAS  Article  Google Scholar 

  25. [25]

    Siemons M, Leifert A, Simon U. Preparation and gas sensing characteristics of nanoparticulate p-type semiconducting LnFeO3 and LnCrO3 materials. Adv Funct Mater. 2007;17(13):2189.

    CAS  Article  Google Scholar 

  26. [26]

    Murade PA, Sangawar VS, Chaudhari GN, Kapse VD, Bajpeyee AU. Acetone gas-sensing performance of Sr-doped nanostructured LaFeO3 semiconductor prepared by citrate sol-gel route. Curr Appl Phys. 2011;11(3):451.

    Article  Google Scholar 

  27. [27]

    Song P, Qin HW, Zhang L, An K, Lin ZJ, Hu JFM. Jiang, The structure, electrical and ethanol-sensing properties of La1−xPbxFeO3 perovskite ceramics with x ≤ 0.3. Sens Actuators B. 2005;104(2):312.

    CAS  Article  Google Scholar 

  28. [28]

    Parida KM, Reddy KH, Martha S, Das DP, Biswal N. Fabrication of nanocrystalline LaFeO3: an efficient sol–gel auto-combustion assisted visible light responsive photocatalyst for water decomposition. Int J Hydrogen Energy. 2010;35(22):12161.

    CAS  Article  Google Scholar 

  29. [29]

    Cao ES, Qin YR, Cui TT, Sun L, Hao WT, Zhang YJ. Influence of Na doping on the magnetic properties of LaFeO3 powders and dielectric properties of LaFeO3 ceramics prepared by citric sol–gel method. Ceram Int. 2017;43(10):7922.

    CAS  Article  Google Scholar 

  30. [30]

    Ghaffari M, Shannon M, Hui H, Tan OK, Irannejad A. Preparation, surface state and band structure studies of SrTi1−xFexO3−δ (x=0-1) perovskite-type nano structure by X-ray and ultraviolet photoelectron spectroscopy. Surf Sci. 2012;606(5–6):670.

    CAS  Article  Google Scholar 

  31. [31]

    Liu X, Hu JF, Cheng B, Qin HW, Zhao M, Yang C. First-principles study of O2 adsorption on the LaFeO3 (010) surface. Sens Actuators B. 2009;139(2):520.

    CAS  Article  Google Scholar 

  32. [32]

    Hao P, Song P, Yang ZX, Wang Q. Synthesis of novel RuO2/LaFeO3 porous microspheres its gas sensing performances towards trimethylamine. J Alloys Comp. 2019;806:960.

    CAS  Article  Google Scholar 

  33. [33]

    Phokha S, Pinitsoontorn S, Maensiri S, Rujirawat S. Structure, optical and magnetic properties of LaFeO3 nanoparticles prepared by polymerized complex method. J Sol–Gel Sci Technol. 2014;71(2):333.

    CAS  Article  Google Scholar 

  34. [34]

    Kou XY, Wang C, Ding MD, Feng CH, Li X, Ma J, Zhang H, Sun YF, Lu GY. Synthesis of Co-doped SnO2 nanofibers and their enhanced gas-sensing properties. Sens Actuators B. 2016;236:425.

    CAS  Article  Google Scholar 

  35. [35]

    Yan SH, Ma SY, Li WQ, Xu XL, Cheng L, Song HS, Liang XY. Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance. Sens Actuators B. 2015;221:88.

    CAS  Article  Google Scholar 

  36. [36]

    Feng CH, Ruan SP, Li JJ, Zou B, Dong W. Ethanol sensing properties of LaCoxFe1−xO3 nanoparticles: effects of calcination temperature, co-doping, and carbon nanotube-treatment. Sens Actuators B. 2011;155(1):232.

    CAS  Article  Google Scholar 

  37. [37]

    Zhang Y, Duan ZH, Zou HF, Ma M. Fabrication of electrospun LaFeO3 nanotubes via annealing technique for fast ethanol detection. Mater Lett. 2018;215:58.

    CAS  Article  Google Scholar 

  38. [38]

    Hao P, Lin XG, Song P, Yang ZX, Wang Q. Hydrothermal preparation and acetone-sensing properties of Ni-doped porous LaFeO3 microspheres. J Mater Sci-Mater Electron. 2020;31:6679.

    CAS  Article  Google Scholar 

  39. [39]

    Hao P, Song P, Yang ZX, Wang Q. Porous LaFeO3 microspheres decorated with Au nanoparticles for superior formaldehyde gas-sensing performances. J Mater Sci-Mater Electron. 2020;31:4632.

    CAS  Article  Google Scholar 

  40. [40]

    Qin J, Cui ZD, Yang XJ, Zhu SL, Li ZY, Liang YQ. Synthesis of three-dimensionally ordered macroporous LaFeO3 with enhanced methanol gas sensing properties. Sens Actuators B. 2015;209:706.

    CAS  Article  Google Scholar 

  41. [41]

    Doroftei C, Popa PD, Iacomi F. Selectivity between methanol and ethanol gas of La–Pb–Fe–O perovskite synthesized by novel method. Sens Actuators A. 2013;176:190.

    Article  CAS  Google Scholar 

  42. [42]

    Qin J, Cui ZD, Yang XJ, Zhu SL, Li ZY, Liang YQ. Three-dimensionally ordered macroporous La1−xMgxFeO3 as high performance gas sensor to methanol. J Alloy Compd. 2015;635:194.

    CAS  Article  Google Scholar 

  43. [43]

    Benali A, Azizi S, Bejar M, Dhahri E, Graça MFP. Structural, electrical and ethanol sensing properties of double-doping LaFeO3 perovskite oxides. Ceram Int. 2014;40(9):14367.

    CAS  Article  Google Scholar 

  44. [44]

    Zhang L, Hu JF, Song P, Qin HW, Jiang MH. Electric properties and acetone-sensing characteristics of La1−xPbxFeO3 perovskite system. Sens Actuators B. 2006;114(2):836.

    CAS  Article  Google Scholar 

  45. [45]

    Porta P, Cimino S, DeRossi S, Faticanti M, Minelli G, Pettiti I. ABO3 (A=La, Nd, Sm) LaFe1−xMgxO3 perovskites: structural and redox properties. Mater Chem Phys. 2001;71(2):165.

    CAS  Article  Google Scholar 

  46. [46]

    Fan K, Qin HW, Wang L, Ju L, Hu JF. CO2 gas sensors based on La1−xSrxFeO3 nanocrystalline powders. Sensor Actuators B. 2013;177:265.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 61102006 and 51672110) and the Natural Science Foundation of Shandong Province, China (Nos. ZR2018LE006 and ZR2015EM019).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Peng Song or Qi Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hao, P., Qu, GM., Song, P. et al. Synthesis of Ba-doped porous LaFeO3 microspheres with perovskite structure for rapid detection of ethanol gas. Rare Met. (2021). https://doi.org/10.1007/s12598-020-01672-2

Download citation

Keywords

  • Perovskite
  • LaFeO3 microspheres
  • Ba-doped
  • Ethanol
  • Gas sensors