Creep prediction model for nickel-based single-crystal superalloys considering precipitation of TCP phase

Abstract

The microstructure of nickel-based single-crystal (SC) superalloys has a pivotal influence on their creep properties. The addition of the Re element not only enhances the long-term creep properties of nickel-based SC superalloys, but also results in the formation of a topologically close-packed (TCP) phase which is a harmful and brittle hard phase. Here, high-temperature creep interruption tests of a nickel-based SC superalloy that contains 4.8 wt% Re were performed under various temperatures and stress conditions, and the evolution of microstructure during creep was observed by scanning electron microscopy (SEM). The volume fraction of the TCP phase was also extracted to explore the mechanism that controls the impacts of the TCP phase on the creep properties. According to the microstructure evolution mechanism, the influence of the TCP phase was attributed to the initial damage and critical shear stress of the material. A creep performance prediction model for nickel-based SC superalloys considering the precipitation of the TCP phase that is based on the crystal plasticity theory and a modified creep damage model was established. The simulation curves fit well with the experimental results and the errors between prediction creep life with test results are within 5%.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. [1]

    Ou MQ, Ma YC, Ge HL, Xing WW, Zhou YT, Zheng SJ, Liu K. Microstructure evolution and mechanical properties of a new cast Ni-base superalloys with various Ti contents. J Alloy Compd. 2018;735:193.

    CAS  Article  Google Scholar 

  2. [2]

    Wen ZX, Zhang DX, Li SW, Yue ZF, Gao JY. Anisotropic creep damage and fracture mechanism of nickel-base single crystal superalloys under multiaxial stress. J Alloy Compd. 2017;692:301.

    CAS  Article  Google Scholar 

  3. [3]

    Zhang YM, Wen ZX, Pei HQ, Wang JP, Li ZW, Yue ZF. Equivalent method of evaluating mechanical properties of perforated Ni-based single crystal plates using artificial neural networks. Comput Methods Appl Mech Eng. 2019;360(1):112725.

    Google Scholar 

  4. [4]

    Huang WQ, Yang XG, Li SL. Evaluation of service-induced microstructural damage for directionally solidified turbine blade of aircraft engine. Rare Met. 2019;38(2):157.

    CAS  Article  Google Scholar 

  5. [5]

    Wang JJ, Wen ZX, Zhang XH, Zhao YC, Yue ZF. Effect mechanism and equivalent model of surface roughness on fatigue behavior of nickel-based single crystal supersuperalloys. Int J Fatigue. 2019;125:101.

    CAS  Article  Google Scholar 

  6. [6]

    Huang M, Zhu J. An overview of rhenium effect in single-crystal supersuperalloys. Rare Met. 2016;35(2):127.

    CAS  Article  Google Scholar 

  7. [7]

    Matuszewski K, Rettig R, Matysiak H, Peng Z, Povstugar I, Choi P, Muller J, Raabe D, Spiecker E, Kurzydlowski KJ, Singer RF. Effect of ruthenium on the precipitation of topologically close packed phases in Ni-based superalloys of 3rd and 4th generation. Acta Mater. 2015;95:274.

    CAS  Article  Google Scholar 

  8. [8]

    Wollgramm P, Buck H, Neuking K, Parsa AB, Schuwalow S, Rogal J, Drautz R, Eggeler G. On the role of Re in the stress and temperature dependence of creep of Ni-base single crystal superalloys. Mater Sci Eng A. 2015;628:382.

    CAS  Article  Google Scholar 

  9. [9]

    Shi QY, Huo JJ, Zheng YR, Feng Q. Influence of Mo and Ru additions on the creep behavior of Ni-based single crystal superalloys at 1100 °C. Mater Sci Eng A. 2018;725:148.

    CAS  Article  Google Scholar 

  10. [10]

    Liu CP, Zhang XN, Ge L, Liu SH, Wang CY, Yu T, Zhang YF, Zhang Z. Effect of rhenium and ruthenium on the deformation and fracture mechanism in nickel-based model single crystal superalloys during the in-situ tensile at room temperature. Mater Sci Eng A. 2017;682:90.

    CAS  Article  Google Scholar 

  11. [11]

    Tsukada Y, Koyama T, Murata Y, Miura N, Kondo Y. Estimation of γ/γ′ diffusion mobility and three-dimensional phase-field simulation of rafting in a commercial nickel-based superalloys. Comput Mater Sci. 2014;83:371.

    CAS  Article  Google Scholar 

  12. [12]

    Huo JJ, Shi QY, Feng Q. Effect of multiple superalloysing additions on microstructural features and creep performance at 950 °C and 400 MPa in Ru-containing single crystal superalloys. Mater Sci Eng, A. 2017;693:136.

    CAS  Article  Google Scholar 

  13. [13]

    Zhang ZK, Yue ZF. TCP phases growth and crack initiation and propagation in nickel-based single crystal superalloys containing Re. J Alloy Compd. 2018;746:84.

    CAS  Article  Google Scholar 

  14. [14]

    Wang ZX, Li YM, Zhao HC. Evolution of μ phase in a Ni-based superalloys during long-term creep. J Alloy Compd. 2019;782:1.

    CAS  Article  Google Scholar 

  15. [15]

    Hobbs RA, Zhang L, Rae CMF, Tin S. Mechanisms of topologically close-packed phase suppression in an experimental Ruthenium-bearing single-crystal nickel-base superalloys at 1100 °C. Metall Mater Trans A. 2008;39(5):1014.

    Article  Google Scholar 

  16. [16]

    Seiser B, Drautz R, Pettifor DG. TCP phase predictions in Ni-based superalloys: structure maps revisited. Acta Mater. 2011;59(2):749.

    CAS  Article  Google Scholar 

  17. [17]

    Latief FH, Kakehi K. Effects of Re content and crystallographic orientation on creep behavior of aluminized Ni-base single crystal superalloys. Mater Des. 2013;49:485.

    CAS  Article  Google Scholar 

  18. [18]

    Koizumi Y, Harada H, Kobayashi T, Yokokawa T. Long-term creep property of a second-generation nickel-base single-crystal superalloys, TMS82+. J Jpn Inst Met. 2005;69(8):743.

    CAS  Article  Google Scholar 

  19. [19]

    Dubiel B, Indyka P, Kalemba-Rec I, Kruk A. The influence of high temperature annealing and creep on the microstructure and chemical element distribution in the γ, γ′ and TCP phases in single crystal Ni-base superalloys. J Alloy Compd. 2018;731:693.

    CAS  Article  Google Scholar 

  20. [20]

    Rehman HU, Durst K, Neumeier S, Parsa AB, Kostka A, Eggeler G, Goken M. Nanoindentation studies of the mechanical properties of the μ phase in a creep deformed Re containing nickel-based superalloys. Mater Sci Eng A. 2015;634:202.

    CAS  Article  Google Scholar 

  21. [21]

    Tan ZH, Wang XG, Ye LH, Hou GC, Li R, Yang YH, Liu JL, Liu JD, Yang L, Wang B, Dong P, Li JG, Zhou YZ, Sun XF. Effects of rhenium on the microstructure and creep properties of novel nickle-based single crystal superalloyss. Mater Sci Eng A. 2019; 761:138042.

  22. [22]

    Tian SG, Liang FS, Li AN, Li JJ, Qian BJ. Microstructure evolution and deformation features of single crystal nickel-based superalloys containing 4.2% Re during creep. Trans Nonferrous Met Soc China. 2011; 21(7):1532.

  23. [23]

    Yang WC, Yue QZ, Cao K, Chen FY, Zhang J, Zhang RR, Liu L. Negative influence of rafted γ′ phases on 750 °C/750 MPa creep in a Ni-based single crystal superalloys with 4% Re addition. Mater Charact. 2018;137:127.

    CAS  Article  Google Scholar 

  24. [24]

    Viguier B, Touratier F, Andrieu E. High-temperature creep of single-crystal nickel-based superalloys: microstructural changes and effects of thermal cycling. Philos Mag. 2011;91(35):4427.

    CAS  Article  Google Scholar 

  25. [25]

    Zhang CJ, Hu WB, Wen ZX, Tong WW, Zhang YM, Yue ZF, He PF. Creep residual life prediction of a nickel-based single crystal superalloys based on microstructure evolution. Mater Sci Eng, A. 2019;756:108.

    CAS  Article  Google Scholar 

  26. [26]

    Wen ZX, Pei HQ, Yang H, Wu YW, Yue ZF. A combined CP theory and TCD for predicting fatigue lifetime in single-crystal superalloy plates with film cooling holes. Int J Fatigue. 2018;111:243.

    CAS  Article  Google Scholar 

  27. [27]

    Wu WP, Li SY, Li YL. An anisotropic elastic–plastic model for predicting the rafting behavior in Ni-based single crystal superalloys. Mech Mater. 2019;132:9.

    Article  Google Scholar 

  28. [28]

    Tang S, Ning LK, Xin TZ, Zheng Z. Coarsening behavior of gamma prime precipitates in a nickel based single crystal superalloy. J Mater Sci Technol. 2016;32(2):172.

    CAS  Article  Google Scholar 

  29. [29]

    Zhang YQ, Yang C, Xu QY. Numerical simulation of microstructure evolution in Ni-based superalloys during P-type rafting using multiphase-field model and crystal plasticity. Comput Mater Sci. 2020;172:109331.

    CAS  Article  Google Scholar 

  30. [30]

    Tian SG, Wang MG, Tang L, Qian BJ, Xie J. Influence of TCP phase and its morphology on creep properties of single crystal nickel-based superalloys. Mater Sci Eng A. 2010;527(21):5444.

    Google Scholar 

  31. [31]

    Mackay RA, Gabb TP, Garg A, Rogers RB, Nathal MV. Influence of composition on microstructural parameters of single crystal nickel-base superalloyss. Mater Charact. 2012;70:83.

    CAS  Article  Google Scholar 

  32. [32]

    Hill R. Generalized constitutive relations for incremental deformation of metal crystals by multislip. J Mech Phys Solids. 1966;14(2):95.

    CAS  Article  Google Scholar 

  33. [33]

    Hill R, Rice JR. Constitutive analysis of elastic-plastic crystals at arbitrary strain. J Mech Phys Solids. 1972;20(6):401.

    Article  Google Scholar 

  34. [34]

    Taylor GI. Plastic strain in metals. J Inst Met. 1938;62:307.

    Google Scholar 

  35. [35]

    Taylor GI, Elam CF. The distortion of an aluminium crystal during a tensile test. Proc R Soc A. 1923;102(719):643.

    Google Scholar 

  36. [36]

    Taylor GI, Elam CF. The plastic extension and fracture of aluminium crystals. Proc R Soc Lond. 1925;108(745):28.

    CAS  Google Scholar 

  37. [37]

    Asaro RJ. Micromechanics of crystals and polycrystals. Adv Appl Mech. 1983;23(8):1.

    Google Scholar 

  38. [38]

    Schmid E, Boas W. Plasticity of crystals. London: FA Hughes; 1950. 89.

    Google Scholar 

  39. [39]

    Kachanov LM. Introduction to continuum damage mechanics. Yutaka Toi: Martinus Nijhoff Publishers; 1986. 135.

    Google Scholar 

  40. [40]

    Rabotnov YN, Leckie FA, Prager W. Creep problems in structural members. J Appl Mech. 1970;37(1):249.

    Article  Google Scholar 

  41. [41]

    Wang JP, Liang JW, Wen ZX, Yang YQ, Yue ZF. The inter-hole interference on creep deformation behavior of nickel-based single crystal specimen with film-cooling holes. Int J Mech Sci. 2019;163:105090.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51875462), the Fundamental Research Funds for the Central Universities (No. 3102019PY001), the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (Nos. ZZ2019015 and ZZ2019017) and the National Science and Technology Major Project (Nos. 2017-IV-0003-0040 and 2017-V-0003-0052).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Xun Wen or Tao Feng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, XY., Wang, JJ., Zhang, CJ. et al. Creep prediction model for nickel-based single-crystal superalloys considering precipitation of TCP phase. Rare Met. (2021). https://doi.org/10.1007/s12598-020-01670-4

Download citation

Keywords

  • TCP phase
  • Nickel-based single-crystal superalloys
  • Microstructure evolution
  • Creep performance prediction
  • Crystal plasticity theory